最高エネルギー宇宙線の 電波的観測の研究

Contents

- 電波エコー法
- TA実験との空気シャワー同時観測
- 加速器からの電子ビームを用いた試験

池田大輔 東京大学宇宙線研究所

電波による観測手法

レーダーによる宇宙線観測

•50MHz帯の電波を送信し、空気シャワー 通過時に電離損失で発生する電子により 散乱された電波を観測する

$$P_R = P_T \cdot \left(\frac{G_T}{4\pi R_T^2}\right) \cdot \sigma \cdot \left(\frac{G_R}{4\pi R_R^2}\right) \cdot \left(\frac{\lambda^2}{4\pi}\right)$$

流星観測において実績有

流星:高度~100km, ~70km/s, ~数µgの塵

EAS:高度~数km, 光速, 原子核(p~Fe)

多地点同時流星観測プロジェクト

再構成された方向と放射点(2009)

期待される信号

流星事象との違い

高度

流星:~100km, 宇宙線:~10km →電子の寿命が短い 流星:~70km/s,宇宙線:光速 反射体の移動速度 \rightarrow Chirp

散乱点が光速で移動→ドップラー効果 (電子寿命は~100ns@10km程度) 時間情報から縦発達情報を得る可能性? シャワー横方向広がりによる影響 電子分布が波長より大きい場合には、 反射波のコヒーレンスが崩れる→信号強度の減少 地面に近い部分では影響が大きくなる

期待される信号の例 (54.1MHz送信、10¹⁹eV)

空気シャワー特有

→信号同定やセルフトリガーの可能性?

Chirpは典型的には~MHz/us程度

受信装置には 広い受信帯域が必要

TARA: Telescope Array RAdar

TA実験との同時観測により、レーダーを用いた宇宙線観測法を確立する TA実験の地表検出器/大気蛍光望遠鏡により 空気シャワー事象と同定された事象を、電波で同時に観測する

- 2013年から水平偏波、
 20kW出力で運転開始
 2014年8月に30kW出力にupgrade
- ・ 2014年10月から垂直偏波に変更作業開始

TARA送信器

- ハ木アンテナ x 8
- ・ ビーム幅 +-14度
- ・ アンテナゲイン 22dBi
- 送信出力 最大 40kW, CW
- 送信周波数 54.1MHz
 - ・ 米国旧アナログTV ch2

受信器1@LR

大気蛍光望遠鏡サイトの一つである、Long Ridge サイトに設置

- Dual polarized log periodic antenna x 4
- 250MHz sampling ADC (TARA1.5は12.5Msps)
- 40-80MHz range

• 大気蛍光望遠鏡からのトリガー&セルフトリガー

- 装置Upgrade & 較正完了
- SGにて擬似chirp信号を入れる
- アンテナパターン測定
- ・ノイズ測定

- ・ 2013年8月-2014年4月までの観測において、有意な信号は見られなかった
 - ・ 散乱断面積のupper limitの計算中
 - ・今後、30kW送信のデータ、及び垂直偏波による観測を行なう

受信器2@CLF

- レーザー射出サイトであるCLFIに設置
- Dual polarized log periodic antenna x 2
- デジタル受信器(USRP+WBX)による直交検波
 - 中心周波数54.1MHz, Sampling 25MHz
 - GPS 1PPS+10MHz clockにより 絶対時間精度50nsで全受信器を同期
 - 50-66MHz range
- 地表検出器からのトリガーでデータを取得
- エコー信号以外の宇宙線由来の電波もターゲット
- 2014年7月に設置、10月に壊れたAmp/USRPを修復

電子線形加速器からのビームを用いた実証実験

Receiver

40MeV, ~109e-

140m

000

10

LIDAR

Transmitter

BR

Transmitter @BR

八木アンテナ

60MHz, ~10W

140m

ELS

TA実験の小型電子線形加速器 (Electron Light Source: ELS)か らの電子ビームをターゲットとし た電波エコー手法検証実験を 行なう

Receiver @BR

- Log-periodic antenna
- 50-1300MHz

- DAQはCLFの受信器と同じ物を使用
- ・ ELSビームは2種類の時間幅のビームを用意
 - 1us beam: FD較正で使用する物
 - 20ns beam: 1us beamと同じ電荷量で時間幅を短くした物
- ・ 電波のON/OFF、ビームのON/OFFの条件でデータを比較

- 128.5 ± 8.5 p0 1200 3.39 ± 0.07 p1 v = p0 + p1 * x1000 20ns beamを用いた試験では信号が検出された (cnt) ただし送信電波をOFFにしても信号が検出されるので 800 浜 600 信号強度はビーム電荷に比例しているので、ビーム 400 周波数を上げると信号強度は小さくなる
- 偏波を変えた測定では、垂直偏波は水平偏波の2倍 の強度があった

電波エコーではない

由来の電波

•

信号の起源と宇宙線への応用

33rd International Cosmic Ray Conference, Rio de Janeiro 2013 The Astroparticle Physics Conference

Coherent radio emission from the cosmic ray air shower sudden death

BENOÎT REVENU AND VINCENT MARIN

SUBATECH, 4 rue Alfred Kastler, BP20722, 44307 Nantes, CEDEX 03, Université de Nantes, École des Mines de Nantes, CNRS/IN2P3, France

- 空気シャワーの場合、電子/陽電子の両方が存在するが、陽電子の方が少ないため総電荷はマイナス
- 空気シャワーが地面に到達した際、
 急激な電場の変化が起こる事から
 電波が発生する(Sudden death)

本測定で観測したのは、電子ビームがコ ンテナから現れる際の急激な電場変化 による電波 → Sudden birth?

CLFに設置したアンテナで、実際に空気シャワーからのSudden death信号が受かるかどうか検証中

まとめ

- 次世代大規模超高エネルギー宇宙線実験の観測手法として、電波、
 特に電波エコーを使った観測に取り組んでいる
- 現在、TA実験との同時観測、及びTAの電子加速器を用いたビーム 試験により、手法の検証を行なっている
- TA実験との同時観測で、約半年分のデータを解析した所、エコー事 象は見つからなかった
 - 現在、散乱断面積のupper limitを計算中
 - CLFIこも検出器を置き、データを取得中
 - 今後、30kW出力データの解析、及び垂直偏波による観測を行なう
- 加速器を用いた試験では、エコーではないビーム由来の電波を観測した
 - Sudden Birth信号?
 - 空気シャワー観測への応用の可能性
- この信号の中に電波エコー成分が含まれている可能性があるので、
 電波強度を上げた再試験を今月頭に行なった
 - データ解析中