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Core collapse supernova (ECSN) ~ EMwaves
o s £ , ¢ 3 ~Gamma ¢
' 3 .-.‘;....'...:" ¢ STy B
Gt TR T e § , . Optical * .
AN R < W ‘\ -Infrgréd. 4

R - "

Cesmicsrays

. “

g » . \ ,..Q. e _»6 1 .
Neutrinos .- B "] T M
jig 3 . v . - 5 \ D &-’-.’\'Q'.’ :
: - ‘ s P Y :
: ‘ 1 ' " T
2 .0 . ,.é - I ‘ . '.. t!,".
s S : J = : by \ .,\y- 'y
v p »

AR B s "-“ .\:" . U
- Gravitational * - /T L S :

- waves < Sap - RN
Y .’.0. -‘_- * '.'T.. .4

o s g ot N |  NEUTRON STAR ILLUSTRATION
. CasA (Supérnova.Remnant) * Credit: Chandra 5 - ¢ ——= 5

» aflhe



Neutrino-driven explosion mechanism
(aided by multi-dimensional fluid instabilities)
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Explosions have been witnessed
more often than not in 3D CCSN simulations
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Explosion energy
(comparing between multi-D CCSN simulations and observations)

Theoretical Explosion Energies (this paper)

Martinez & Bersten
Pumo et al. ,
Utrobin & Chugali
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Gravitational Waves

Radice et al. 2019
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Gravitational Waves

Strong correlation between GWs and Proto-neutron star mass

Matter

Mpns = 1-36 + 0.104 Eg,, + 0.0318 EZgy,

1 2
3 46
Time after bounce [s] Egw [107" erg]

Vartanyan et al. 2023 Nagakura and Vartanyan 2023



Luminosity
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Neutrino signals
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Some new features emerge
in 3D explosion models

1. Explosion models have low neutrino
luminosity than those with non-explosions

(due to weak mass accretion)

2. The average energy of electro-type
neutrinos and their anti-partners are lower
in 3D than 1D.

3. Neutrino luminosity of heavy-leptonic
neutrinos are higher in 3D than 1D.

(due to PNS convection)

Useful formula:




\/ Detector simulations of neutrino signal for Super-K (Hyper-K)

Detection rate of neutrinos (SN@ 10kpc) Fourier spectrum of time variability
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els is different from that in 1D.

2. The information of fluid instability in CCSN core is imprinted in neutrino
signal as time variability.




Strong correlation between E, and N, in each detector
Nagakura et al. 2021
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E, has a strong correlation to M,
Nagakura and Vartanyan 2022
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The time evolution of radiated energy of
neutrinos is characterized by PNS mass
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Vv Neutrino shock acceleration in CCSNe Nagakura and Hotokezaka 2021

Vi (<100MeV)
Vr (<200 MeV)

Nucleon scattering Coherent scattering
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Nucleon
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Non-thermal neutrinos is produced
through Fermi acceleration.
This leads to an interesting observational
consequence in CCSN neutrinos.

(See also Kazanas and Ellison 1981, Giovanoni et al. 1989)

(Quasi-thermal)
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Cumulative number of neutrino events at each detector

Early post-bounce phase < 30ms Late post-bounce phase
(all CCSN progenitors) (only cases with BH formation)
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How can we get rid of the uncertainty of neutrino flavor conversion in
neutrino signal?

Neutrino flavor conversion in CCSN core seems to be more complex than
what we have considered so far, due to collective neutrino oscillations.
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Neutrino oscillations induced by self-interactions

Pantalone 1992, Duan et al. 2006
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1. Refractions by self-interactions induce neutrino flavor conversions, which is analogy
to matter effects (e.g., MSW resonance).

2. The oscillation timescale is much shorter than the global scale of CCSN/BNSM.

3. Collective neutrino oscillation induced by neutrino-self interactions commonly
occurs in CCSNe and BNSM environments.
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Collective neutrino oscillations ubiquitously
occur in CCSN core

Space-time diagram of ELN-angular crossings in CCSNe

Shock wave

Type | crossings [Exp-only]

Type Il crossings (nucleon-scattering + a~1 + cold matter)
(neutrino absorption)

Type Il crossings [Exp-only]
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< Any type of crossings (PNS convection)

Time ~ 1s
Nagakura et al. 2021




Collective neutrino oscillation potentially gives a significant impact on
both CCSN dynamics and neutrino signal
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Weak progenitor dependence in
neutrino radiated-energy vs. detection count

P P Event counts depend on
neutrino flavor conversion
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Proto neutron star (PNS) mass is a key ingredient
to characterize GW and neutrino signal

Irradiated neutrino energy versus time Irradiated GW energy vs. PNS mass
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Flow chart: joint analysis for neutrinos and GW signals
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Summary:

Multi-D CCSN simulations can offer successful explosion models without
artifices.

Based on these simulations, we can consider what physical ingredients can be
extracted from observable signals.

Joint analysis of GWs and neutrinos can tell us about proto-neutron star
evolution and place a constraint on neutrino oscillations in CCSNe.

We are now extending our correlation study to include EM waves (stay
tuned!).

Information on complex physical processes inside CCSNe is imprinted in
temporal variations and non-thermal spectra of neutrinos.
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