令和 3 年度(2021) 共同利用研究·研究成果報告書

和文: CTA 大口径望遠鏡のデータ解析手法の確立と初期観測

英文: Development of analysis method and initial observation with CTA Large-

Sized Telescope

武石 隆治(東京大学宇宙線研究所) 研究代表者

参加研究者

研究成果概要

スペイン・ラパルマの Cherenkov Telescope Array (CTA)実験は、既存実験の 10 倍の 感度を持つ解像型大気チェレンコフ望遠鏡(IACT)アレイの建設を進めており、並行 して既設の望遠鏡でのエネルギー約 20GeV 以上のガンマ線の観測を行っている。 CTA 大口径望遠鏡は 2018 年から初号機の観測を開始しており、これまで主に望遠鏡 の較正を進めていたため、観測データの解析手法は確立していない。本研究では、 CTA 大口径望遠鏡を用いて、代表的なガンマ線天体であるかに星雲を観測し、精度 の良いデータ解析手法を確立する。それにより、かに星雲の 20GeV 以上のエネルギ ースペクトルを測定し、望遠鏡の性能の実証を行う。

2021年度は、以下の研究成果が得られた。

(1)かに星雲の初期観測

2019年11月から、大口径望遠鏡でのかに 星雲の定常観測が進められている。CTA グ ループで 2020 年の観測データを解析し、エ ネルギースペクトルが約 40GeV 以上で過去 の実験と概ね一致していることが確かめら れた(図 1)。また、2021 年には CTA 日本グ ループにおいてデータ解析の講習会を開き、 その中で申請者は、解析の初期段階である 観測データ読み出し、ガンマ線信号の角度 分布の算出のためのサンプルプログラムを ル[R. López-Coto, PoS (ICRC2021) 806]

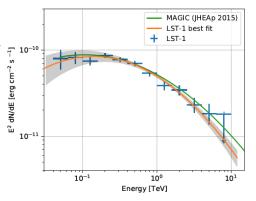


図1 CTA 大口径望遠鏡初号機(LST1) によるかに星雲のエネルギースペクト

作成し、グループメンバーが新規にデータ解析を行う環境を整備した。今後は、データ解析手法の改善による 40GeV 以下の観測精度の向上が必要である。

(2)Mrk421の観測による CTA 大口径望遠鏡の性能評価

大口径望遠鏡では 2020 年 12 月から、ガンマ線フラックスの時間変動を示す活動 銀河核 Mrk421 の定常観測を進めている。申請者は、2020 年 12 月~2021 年 3 月の Mrk421 の観測データを用いて、100GeV 以上のガンマ線フラックスの時間変動(光 度曲線)を解析した。また、大口径望遠鏡は Major Atmospheric Gamma Imaging Cherenkov (MAGIC)実験の 2 台の IACT に隣接しており、申請者は同じ時期の MAGIC 望遠鏡のデータ解析を行い、両実験の光度曲線を比較した。その結果、両 者のフラックスは 1-2σ 以内で概ね一致する結果が得られ、大口径望遠鏡を正常に 運用していることが確認できた[1]。今後は、Mrk421 を継続して観測し、並行して 他の活動銀河核の観測を進めていく予定である。

(3)PMT のモニタープロットの構築

申請者は 2020 年から、大口径望遠鏡のカメラの PMT 状態をモニターするためのプログラムの開発を続けている。これまでに、PMT モジュールの電圧の動作に異常を検知するルーチンを構築し、モニタリングの自動化の手法について、CTA グループ内で議論を進めてきた。2021 年度には、グループメンバーと協力して、申請者が作成した PMT のモニタープロットを、望遠鏡運用の web ページに 1 日ごとに自動でアップロードする体制を整え、今後の望遠鏡カメラの安定運用に貢献した。

(4)機械学習によるガンマ線・宇宙線バックグラウンド事象の識別手法の最適化 大口径望遠鏡のデータ解析では、モンテカルロ計算で生成したガンマ線と宇宙線 バックグラウンドのシャワー形状に機械学習を行い、実データで測定したシャワー 形状のガンマ線らしさ(gammaness)のパラメータを求め、ガンマ線事象を選別して いる。本研究では、機械学習の際に入力するシャワー形状のパラメータ(長さ、幅 など)を精査し、余分なパラメータを取り除くことで、望遠鏡カメラ上での gammaness の平均値の非一様性を修正した。それにより、データ解析における望遠 鏡感度の改善に貢献した。

(2021年度の国内学会発表)

[1]武石隆治 他 CTA LST プロジェクト、「CTA 報告 183:CTA 大口径望遠鏡初号機の 観測データ解析の現状」、日本物理学会 2021 年秋季大会、オンライン、2021 年 9 月