

Multi-messenger astronomy by the highestenergy cosmic rays and gamma rays

Takashi SAKO

Next-generation Neutrino Science and Multi-messenger Astronomy Organization/ICRR,

University of Tokyo

マルチメッセンジャー天文学の展開@柏

Multi-messenger astronomy by the highestenergy {cosmic rays and gamma rays}

Takashi SAKO

Next-generation Neutrino Science and Multi-messenger Astronomy Organization/ICRR, University of Tokyo

CR Origin and MM astronomy

 γ and ν are messengers carrying information of Direction, timing and energy

CR Origin and MM astronomy

 γ and ν are messengers carrying information of Direction, timing and energy

CRs are both senders and messengers carrying information of Energy, particle type (and direction)

GR

CR Origin and MM astronomy

 γ and ν are messengers carrying information of Direction, timing and energy

CRs are both senders and messengers carrying information of Energy, particle type (and direction)

> Propagation is important as well as sources => MM astronomy of sources AND space (photon field, B field, matter)

=> MM astronomy of sources AND space (photon field, B field, matter)

What are known about UHECRs?

- Steepening >10^{19.5}eV is established => Origin is unknown. North/South difference?
- Anisotropy in the medium angular scale => Concentration along the SGP. No excess from the Virgo.
- Heavier at higher energy => Consistent between TA and Auger.

Correlation with candidates (Starburst Galaxies)

Auger, ApJ Lett., 853:L29 (2018)

Observed Excess Map - E > 39 Eev

50		and the second se
- 40	and the second	

 $1 \text{ EeV} = 10^{18} \text{eV}$

Auger, ApJ, 935:170 (2022)

TA, ApJ Lett., 867:L27 (2018)

n with nearby Starburst Galaxies >38 EeV n! del parameters but compatible with both isotropic and SBG hypotheses

Anisotropy, mass and magnetic field

Galactic magnetic deflection

Anisotropy, mass and magnetic field

R. Higuchi, PhD thesis (2022)

Potential source(s) of TA hot spot

Free parameters

- RA, Dec.: coordinates of the CR source
- A1: Deflection angle at 100EeV by regular magnetic field
- A2: Smearing angle at 100EeV by random magnetic field
- α: Direction of regular magnetic field

Potential source(s) of TA hot spot

Arrival directions of >10²⁰eV CRs

Isotropic! => Heavy? Exotic?

PIERRE

Arrival directions of $>10^{20}eV$ CRs

Isotropic! => Heavy? Exotic?

PIERRE AUGER

15

Arrival directions of $>10^{20}eV$ CRs

Isotropic! => Heavy? Exotic?

UHECR observations in MM astronomy

- Source association
 - Effect of magnetic field => mass sensitivity
- Highest energy CR astronomy
 - $>10^{20}$ eV is surprisingly isotropic => more data, mass sensitivity

Neutral particles

- Neutrinos and gamma's => PID by machine learning
- Neutrons => galactic sources

More data

- TAx4 => more events in North
- Auger prime => SD mass sensitivity
- GCOS for future

TAx4 and AugerPrime

Auger, ICRC2023, CRI 14-06

DEPLOYMENT STATUS

- · SSD deployment completed
- · UUB deployment completed end of June 2023
- · Data acquisition and monitoring program as well as the data analysis pipeline updated
- · During deployment constant commissioning work to evaluate stability and long-term

CRC 202:

2023

Sub-PeV γ astonomy and galactic CRs

LHAASO Collaboration, arXiv:2305.1703v1 (2023)

15

5 Significance

0

Tibet AS γ Collaboration, PRL 126, 141101 (2021)

- Tibet AS γ opened a new window of astronomy in the sub-PeV range
- · Origins and distribution of PeV CRs can be surveyed

Diffuse emission >400TeV γ and IceCube ν

MM astronomy of sub-PeV $\gamma's$

SNR G106.3+2.7

- Offset from PWN
- Coincide with ¹²CO molecular cloud

Tibet AS γ Collaboration, Nature Astron. 5, 460-464 (2021)

Sub-PeV source w/o VHE association

Sub-PeV source w/o VHE association

De la Fuente et al., A&A 675, L5 (2023) based on De la Fuente et al., PASJ, 75, 546; Abe et al. A&A, 673, A75 (2023)

Sub-PeV source w/o VHE association

Southern hemisphere!

ALPACA (Andes Large area PArticle detector for Cosmic ray physics and Astronomy) BRAZI CHIL 200 ----25

ALPACA joins MM astronomy

UHECRs and sub-PeV $\gamma's$ play important roles in MM astronomy