The Origin of Cosmic Highenergy Neutrino Background

FRIS **Astronomical Institute**

マルチメッセンジャー天文学の展開

Tohoku University

Shigeo S. Kimura (木村成生)

2023年11月1日~2日

Contents

- Cosmic Neutrino Observation & Source Candidates
- Constraint using Cosmic Gamma-ray Background
- EM-based Catalog Search & Related Models
- IceCube Alert Follow-up & Related Models
- Summary

Detection of Cosmic Neutrinos

- IceCube reported detection of extraterrestrial neutrinos in 2013
- ~ 300 Cosmic neutrino candidates
- Isotropic distribution —> Cosmic high-energy neutrino background

Cosmic HE Neutrino Background Spectrum

- Energy range: TeV-PeV
- Consistent with single power-law
- Soft spectrum

$$\frac{dN}{dE} \propto E^{-2.5}$$

Origin of cosmic v bkgd is a new big mystery

Difficulty for Neutrino Source Identification

- **Optical telescopes** ~ 1 sec (Subaru)
- Neutrino signals ~ 3600 sec (IceCube)
- Too many optical objects within error region
- Pick up source candidates —> Theoretical prediction

High-energy neutrino production

π⁰→2γ

Interaction between CRs & photons/nuclei → Neutrino production Gamma-rays inevitably accompanied with neutrinos

Source Candidates

pγ

Cosmic-ray accelerator

• Gamma-ray Bursts

• Blazars

- **Cosmic-ray Reservoir**
- **Galaxy Clusters**

• Starburst Galaxies

CR accelerators inside reservoir \rightarrow CR trapped in reservoirs \rightarrow Neutrino production by pp

pp

Gamma-ray Constraint on Neutrino Sources

- Fermi Satellite is measuring cosmic gamma-ray backgrounds
- v flux@10 TeV > γ -ray flux@100 GeV
- Consider sources from which both γ & v can easily escape \rightarrow fit theory to neutrino data \rightarrow γ -ray theory >> γ -ray data
- y-ray needs to be absorbed inside the sources (hidden source) $\gamma + \gamma \rightarrow e^+ + e^-$
- X-rays efficiently absorbs GeV y-rays

 10^{-6}

GeV

 $E^{2}\phi$

Source Candidates

pγ

Cosmic-ray accelerator

• Gamma-ray Bursts

• Blazars

- **Cosmic-ray Reservoir**
- Galaxy Clusters

• Starburst Galaxies

pp

CR accelerators inside reservoir \rightarrow CR trapped in reservoirs \rightarrow Neutrino production by pp

How to find neutrino sources

- Catalog search($\gamma \rightarrow \nu$)
 - Matching neutrino data with EM source catalog \rightarrow Neutrino source identification
 - Applicable to any kind of sources
 - Cannot control catalog quality

- Follow-up program($\nu \rightarrow \gamma$)
 - EM follow-up observation to cosmic neutrino signal \rightarrow Neutrino source identification
 - Applicable only to transients
 - **Deeper observation possible**

10

How to find neutrino sources

- Catalog search($\gamma \rightarrow \nu$)
 - Matching neutrino data with
 EM source catalog
 → Neutrino source identification
 - Applicable to any kind of sources
 - Cannot control catalog quality

- Follow-up program($\nu \rightarrow \gamma$)
 - EM follow-up observation to cosmic neutrino signal
 → Neutrino source identification
 - Applicable only to transients
 - Deeper observation possible

Stacking Analysis (GRBs)

Stacking analysis of >1000 GRBs ullet \rightarrow No associated neutrinos \rightarrow Less than 1 % of cosmic neutrino background

- Only the prompt phase is constrained
- Delayed emission may be still possible

Murase et al. 2006 PRL; SSK et al. 2017 ApJ; but see IceCube 2022 for limit on delayed emission

GRB221009A

Murase+, SSK+ 2022

Photon lightcurve

 Single event puts a limit comparable to ~1000 GRBs

Stacking analysis: 862 GeV-emitting blazars \rightarrow No associated neutrinos \rightarrow Less than 7 % of cosmic neutrino background

- This constraint is applicable only to Fermi-detected blazars
- Radio-selected blazars are also constrained, although results contradicting among group

Plavin et al. 2021; Buson et al. 2022; Zhou et al. 2021

14

Source Candidates

pγ

Cosmic-ray accelerator

• Gamma-ray Bursts

• Blazars

Manheim & Biermann 1989 Halzen & Zas 1997

- **Cosmic-ray Reservoir**
- **Galaxy Clusters**

• Starburst Galaxies

CR accelerators inside reservoir \rightarrow CR trapped in reservoirs \rightarrow Neutrino production by pp

pp

- \rightarrow Optically thick disk + coronae
- \rightarrow Optically thin flow

Particle Accele

Particle-In-Cell Simulating

Hoshino 2013, 2015; Riquelme et al.

Magnetic reconnection \rightarrow relativistic particle production Interaction with Turbulence \rightarrow further energization

MRI turbulence

p, inj

Equations for cosmic-ray protons

$$\frac{\partial F_p}{\partial t} = \frac{1}{\varepsilon_p^2} \frac{\partial}{\partial \varepsilon_p} \left(\varepsilon_p^2 D_{\varepsilon_p} \frac{\partial F_p}{\partial \varepsilon_p} + \frac{\varepsilon_p^3}{t_{p-\text{cool}}} F_p \right) - \frac{F_p}{t_{\text{esc}}} + H_{p-\text{cool}}$$
$$D_{\varepsilon_p} \approx \frac{\zeta c}{H} \left(\frac{V_A}{c} \right)^2 \left(\frac{r_L}{H} \right)^{q-2} \varepsilon_p^2,$$

Multi-messenger Spectra from NGC 1068

- Possible to explain IceCube data without overshooting γ-ray data
- CR acceleration is suppressed by BH process ($p+\gamma \rightarrow p+e^{\pm}$) with UV
- Both pp & pγ (with X-rays) contribute to resulting neutrino flux
- **Cascade emission at 10 MeV** ->Testable by MeV y ray satellites

Nearby Seyfert galaxies

• Our model predicts $L_{\nu} \propto L_X$ —> list up bright v-source candidates

- Our model predicts that NGC 1068 should be detected first
- This list is based on BASS catalog we need to examine X-ray data quality

• Stacking nearby Seyferts

 Future detectors should detect v from AGN —> testable by future neutrino experiments

Cosmic High-energy Background from RQ AGNs

 γ (Total) Neutrinos (Total) γ by thermal *e* (AGN Coronae) γ by thermal *e* (RIAFs) Cascade γ (AGN Coronae) Cascade γ (RIAFs) Neutrinos (RIAFs) Neutrinos (AGN Coronae)

 $\Phi_{i} = \frac{c}{4\pi H_{0}} \int \frac{dz}{\sqrt{(1+z)^{3}\Omega_{m} + \Omega_{\Lambda}}} \int dL_{\mathrm{H}\alpha} \rho_{\mathrm{H}\alpha} \frac{L_{\varepsilon_{i}}}{\varepsilon_{i}} e^{-\tau_{i,\mathrm{IGM}}},$

- SSK+ 2021

 - **RIAFs**

6

- QSO: X-ray & 10 TeV neutrinos
- LLAGN: MeV y & PeV neutrinos
- Copious photons \rightarrow efficient $\gamma\gamma -> e+e \rightarrow$ strong GeV γ attenuation \rightarrow GeV flux below the Fermi data
- AGN cores can account for keV-MeV y & TeV-PeV v background

See also Murase, SSK+ 2020 PRL; SSK+ 2019, PRD; SSK+ 2015

22

How to find neutrino sources

- Catalog search($\gamma \rightarrow \nu$)
 - Matching neutrino data with
 EM source catalog
 → Neutrino source identification
 - Applicable to any kind of sources
 - Cannot control catalog quality

- Follow-up program($\nu \rightarrow \gamma$)
 - EM follow-up observation to cosmic neutrino signal
 → Neutrino source identification
 - Applicable only to transients
 - Deeper observation possible

23

IC170922A & TXS0506+056

125m

- MAGIC -3
- Flaring blazar, TXS 0506+056, is found in the error region of IC170922A
- Chance coincident probability: ~ 0.3% \rightarrow 3 σ significance
- First significant association of cosmic neutrino sources

IC170922A & TXS0506+056

Keivani+2018; Gao+2019 etc

- Many theorists modeled multi-messenger signal by one-zone approximation
- X-ray data is the most constraining
- Challenging to achieve expected flux, but 1–10% flux can be achieved reasonably

- Star is torn apart by SMBH —> luminous & long duration transient
- **Details of physical processes unknown**
- 2 associations of IceCube events with TDEs (3.5σ) ?
- Mysterious time delay: Neutrino coming at 100 400 days after opt/UV peak

IC191001 <=> AT2019dsg ; IC200530 <=> AT2019fdr

Murase, SSK + 2020 ApJ

- Corona model : possible
- Wind model
- : unlikely Jet model

(High neutrino flux; time delay: state transition of disks) : challenging (High neutrino flux; time delay: delayed interaction etc) (Low neutrino flux : time delay: target photon evolution)

Test for TDE-neutrino paradigm

- Expected distance to typical neutrino emitting TDEs: $z \sim 0.5 1$ (TDE@z=0.5: 21-24 mag)
 - --> Deep photometric observation (limiting magnitude for 4m telescope: 24 mag)
- Neutrino error region: 1 deg²
 —> Need Wide field of view (typical FoV: 0.03 deg²)
- Currently, only Subaru/HSC can achieve these two features
- Let us search for slow-blue transients (ToO proposal accepted by Subaru 23A, B)

Future prospects of optical follow-up

- Vera Rubin Observatory (LSST):
 - Wide & Deep photometric survey
 - limiting magnitude < 23 mag

We can identify TDE & Jetted SNe as neutrino sources

- Subaru PFS:
 - Wide FoV multi-object spectroscopy
 - Possible to perform spectroscopy to all the transients in neutrino error region

Summary

- Origin of cosmic neutrinos are a new big mystery in astrophysics
- Previously popular models are already disfavored
- AGN accretion flow models can explain cosmic neutrino background
 Future MeV-GeV γ & TeV-PeV neutrino observation robustly test our model
- TDE-neutrino associations are reported, but situation is controversial.
 future optical follow-up is essential to test the TDE-neutrino paradigm

