IceCubeを軸とした マルチメッセンジャー 天文観測の戦略 (Strategies for multi-messenger astronomical observations with IceCube)

岩切 涉(千葉大学ICEHAP) Wataru Iwakiri (Chiba Univ. ICEHAP)

Credit: J. Werthebach, IceCube/NSF

Outline

1. Introduction

2. New IceCube Alert Study

- Multiplet alert
- neutrino X-ray combination alert
- 3. IceCube upgrade and Gen2

Focusing on research being performed by Chiba University

IceCube

Digital Optical Module (DOM)

- Built at the South Pole
- 5160 DOMs buried within 1 km³ of underground
- Cherenkov light from charged particles generated by neutrino interaction detected by DOM
- 86 strings in operation (IC-86) since April 2011.

IceCube : astrophysical diffuse neutrino

IceCube : astrophysical diffuse neutrino

Three objects identified as neutrino emitter

TXS 0506+056 (IceCube 2018)

- blazar (AGN with jets ejected to point at Earth)
- first candidate identified by multi-messenger observations on 2017
- this class of AGN alone would not explain diffuse neutrino flux(~20%)

<u>NGC 1068</u> (IceCube 2022)

- Seyfert galaxy (AGN with weak jets)
- Significance of 4.2 σ by stacking analysis for about 10 years
- Particle acceleration in the corona around SMBH is important
- Origin of diffuse neutrino? → Kimurasan's talk
- <u>Galactic Plane (IceCube 2023)</u>
- Progress in analyzing the cascade events has led to the discovery (4.5 σ level)
- consistent with modeled diffuse emission, but could also unresolved point sources.
- Contribution to the diffuse flux is a few%.

How much does the transient contribute?

arxiv.org/abs/2008.04323

GRBs were a highly expected event as a source of high-energy neutrinos → the non-detection of neutrinos in spatial and temporal coincidence with GRBs over several years →a strict upper bound of 1% for the maximum contribution (IceCube 2017)

Strange supernovae (+circumstellar material)? Nearby TDE? Low-luminosity GRBs?

How much does the transient contribute?

Multiplet alert

The study is lead by Nobu Shimizu @Chiba Univ.

Multiplet

- Multiplet allows selection of nearby events $(z \sim 0.1) \rightarrow$ advantageous for EM follow-ups
- Allows limiting the parameter in the ρ_{ν} ε_{ν} plane from the upper limit of the archive analysis.

Multiplet : method

- Major background source → atmospheric neutrinos
- Focus only on **doublets** and **triplets**
- Set long time window $\Delta T = 30$ days to access various sources
- Construct a **test statistic** Λ from signal and background likelihoods: \mathcal{L}_{sig} , \mathcal{L}_{bg}

Multiplet archival data (~11 years) analysis results

from Nobu Shimizu's ASJ 2023 slides

Using the largest Λ , we scanned the consistent region of $(\mathcal{E}_{\nu,\rho})$.

example of multiplet event

from Nobu Shimizu's ASJ 2023 slides

Type: **Triplet**, (RA, DEC)=(0.58 deg, -0.35 deg) Energy: E=(4 TeV, 30 TeV, 20 TeV), $\Delta T = 16.4$ days, local p-value=7.4×10⁻⁷, FAR= 1/13 [1/yr]

Multiplet alert

multiplet signal gives bias on **close sources** (z < 0.1) \succ

close sources are easy to observe by EM(e.g, when following up with gamma rays, the EBL is less affected.)

 \rightarrow Higher angular resolution than the usual singlet signal (~ 1°)

 $\Delta \psi \sim 0.3^{\circ}$ at 90% containment

Preparing to send out a new Multiplet Alert by the end of this fiscal year

neutrino – X-ray combination alert

IceCube and MAXI

	IceCube	MAXI
Energy range	TeV-PeV($ u$)	2-20 keV (photon)
FOV	All sky	All sky (80% in 92 min orbit)
Start date	April 2011 (IC86)	Aug 2009
Angular resolution	~1.0 deg (90% for track events)	1.5 deg (FWHM)
Data processing	Real-time@South pole	Real-time@TKSC via TDRSS

MAXI (Monitor of Allsky X-ray Image) The survey of

- All sky monitor
 - Overlap of more than 12 years already
- Similar angular resolution
- Real-time data processing and sending alerts

IceCube and MAXI – LLGRBs are common science case

Example of MAXI transient event at the edge of detection limits

GRB 190829A (LLGRB) afterglow

z = 0.0785 358.4 Mpc

Assuming photn index of 2.0, Lx = 1.2 \pm 0.3 x 10⁴⁶ erg/s (68%)@358 Mpc in the 2 - 10 keV band

Such treasure transients may lie in MAXI's subthreshold events.

Idea for X-ray-specific semi-real-time alerts

Background estimation on IceCube and MAXI's combined analysis

MAXI data

The counts in the region are about 10. \rightarrow We have to test for

asymmetry in the Poisson distribution.

method 1 (data driven) : Estimate the PDF from real MAXI data and calculate probability of Ns from observed Nb.

method 2 (analytical) : E-test, for comparing two Poisson means (Krishnamoorthy and Thomson 2004, Journal of Statistical Planning and Inference)

Background estimation on IceCube and MAXI's combined analysis

Background probability distribution is approximately as expected

 \leftarrow Differences between the two methods will be discussed

e.g, GRB 190829A (1 x 10⁴⁶ erg/s @ 358 Mpc) Down-going Up-going 6 (E/GeV) 5 Ц 4 do 10 3 2 -2 $^{-1}$ -7 -5 -6-4 $\log_{10} p - value$

Background of significance over past GRB 190829A is 19 events in 1 year \leftarrow bit high, will consider ways to reduce.

Future works:

- how to multiply the significance of MAXI and IceCube events
- Results of archival data analysis constrain how much LLGRBs contribute to the neutrino diffuse emission

IceCube Upgrade & Gen2

IceCube Upgrade & Gen2

IceCube Upgrade

Optimized for

GeV neutrinos

IceCube (2005-)

Optimized for

• Diffuse high energy cosmic neutrinos

IceCube-Gen2

Optimized for

• Cosmic neutrino point sources

Gen2 : Status

Chiba <u>Gen2 DOM candidates</u>

- Two design candidates, with 16 and 18 PMTs.
- Developed from Upgrade technologies (Mini MainBoard, Optical Gel etc.)
- Use of 4-inch PMTs to maximise photon capture area for given module size

Status:

- Testing the Readout Board
- Gel pad production
- Pressure resistance test

Summary

- Three objects have been identified so far as neutrino emitter (TXS 0506+056, NGC 1068, Galactic Plane).
- The origin of neutrino diffuse emission is still unknown.
- Two new alerts are being developed to identify the origin through multi-messenger observations.
 - Multiplet alert is sensitive to nearby transients with a duration of about 30 days.
 - Combined X-ray and neutrino alert is sensitive to LLGRB-like transients
- The D-egg, which is being fabricated at Chiba University, is currently undergoing FAT. It is scheduled to be transported to Antarctica in FY2024.
- Development of a new DOM for Gen2 is underway.