

Super-Kamioaknde -MM through CCSN bursts-

「マルチメッセンジャー天文学の展開」研究会

東京大学柏キャンパス図書館メディアホール

関谷洋之 2023年11月1日

Supernova neutrinos

• The only detected SN neutrinos are from LMC(50kpc) in 1987.

• The obtained binding energy is almost as expected, but there is a large error in neutrino mean energy. There is no detailed information on the burst process.

Core-collapse supernova (>8M_☉)

• The basic mechanism of core-collapse supernovae explosions (CCNS) was established by detecting 24 neutrinos from 1987A. Neutrinos play a key role in the explosion.

• Explore the time, energy, and flavor structure to get at the details of the explosion mechanism

Supernova Models

• Five 1D models + one 3D model

*Shen, et al. Nucl. Phys. A 637 (1998) 435–450.
Shen, et al. PTEP 100 (1998) 1013–1031.
**Mori et al., PTEP 2021 (2021) 023E01
***Lattimer & Swesty, Nucl. Phys. A 535 (1991) 331–376.

Summary of Supernova models. Core bounce occurs at 0 s.

Model Name	Wilson ^[1]	Nakazato ^[2]	Mori ^[3]	Hüdelpohl ^[4]	Fischer ^[5]	Tamborra ^[6]	
Dimension	1D	1D	1D	1D	1D	3D	
progenitor mass $[M_{\odot}]$	20	20	9.6	8.8	8.8	27	
start time [s]	0.03	-0.05	-0.256	-0.02	0.0	0.011	
duration [s]	14.96	20.05	19.95	8.98	6.10	0.54	
Equation of State	-	Shen*	DD2**	Shen*	Shen*	LS***	
Reference [1] Totani, T., et al. ApJ 496.1 (1998): 216 [2] Nakazato, K., et al. ApJS 205.1 (2013): 2 [3] Mori, M., et al. PTEP 2021.2 (2021): 023E01 [4] Hüdepohl, L., et al. PhRvL 104.25 (2010): 251101 [5] Fischer, T., et al. A&A 517 (2010): A80 [6] Tamborra et al. PRD 90.4 (2014): 045032.				Electron capture Supernova (O-Ne-Mg core)		SASI (Standing Accretion-S Instability)	Sh
2023/	6/1(Thu) @SKCI	Yuri Kash	iwagi				

Super-Kamiokande VII (since July 5, 2022)

Atmospheric v

TeV

Ring imaging Gd-doped water Cherenkov detector

- 49.5k m³ of pure water with 16.2 tons of Gd(0.03 w%)
 - 39 tons of $Gd_2(SO_4)_3 \cdot 8H_2O$
 - ~75% Neutron capture efficiency
- Target volume 32k m³ for SN v

~100

LowE Group SN

Solar v

~3.5 MeV ~20

- 11129 50cm PMTs for Inner detector
- 1885 20cm PMTs for outer detector
- 1km (2700 mwe) underground in Kamioka

atmpd Group

- Measurable : Energy, neutrino types, and direction
- Most sensitive to \overline{v} through inverse beta decay in the Proton decay low energy region.

~1 GeV

Supernova neutrino in SK $\bar{\nu}_{a} + p \rightarrow e^{+}$

The main channel Inverse Beta Decay reaction (IBD) ~90%

The direction of the positron does not reflect the direction of the neutrino

As the neutrino telescope Elastic Scattering interactions (ES) ~5%

The electron keeps the neutrino direction information.

 $\nu + e$

The Gd-loading

Separating ES from IBD allows
improving the SN direction pointing accuracy.
→ Gd enhances the IBS tagging

Neutron tagging for interaction (especially IBD) identification

• By delayed coincidence with 2.2MeV gamma from p-capture

Realtime supernova monitoring of SK

SK's SN monitoring system **"SNWatch.**" Astropart. Phys. 81 (2016)

- Quick online analysis code, reconstructing the events and fitting SN direction
- In case the event burst matches the criteria (uniformity of the events in the detector, number of events), an automatic alarm is sent
 - The criteria are determined so that we would have 100% SN detection efficiency at the Large Magellanic Cloud.

Quick IBD tagging implemented in SNwatch

0.03% Gd makes IBD tagging efficient in SN monitoring Speed-oriented real-time simple IBD tagging algorithm prompt candidates

 $\hat{d}_{\rm SN}^{\rm true}$

ν

SK

Selection of prompt candidates ≥ 7MeV
 Selection of delayed candidates
 Neutron tagging pair of events with

 $\Delta T < 500 \ \mu s \& \Delta R < 300 \ cm$

10

This selection algorithm tags ~50% IBD events

- Maximum Likelihood Fit
 - The likelihood function for the *i*-th event

$$L_{i} = \sum_{\substack{r,k \\ reaction \\ (\text{IBD, ES, }^{16}\text{O CC})}} N_{r,k} t_{r}(f_{i}) p_{r}(E_{i}, \hat{d}_{i}; \hat{d}_{\text{SN}}^{\text{reco}}) \\ PDF \text{ function } \\ PDF \text{ function } \\ (\text{determined by SK MC}) \\ energy \\ ene$$

Likelihood

$$\mathcal{L} = \exp\left\{\sum_{k,r} N_{r,k}\right\} \prod_{i} L_{i}$$

• Maximized by $\partial \mathcal{L}$ $\partial \mathcal{L}$ = 0 $\partial N_{r,k}$ $\partial \hat{d}_{\rm CN}^{\rm reco}$

This process takes time...

(d) Hüdelpohl model

(e) Fischer model

(f) Tamborra model

12

Upgrading with HealPix direction estimation

- HEALPix-based fitter (Hierarchical Equal Area isoLatitude Pixelation of a sphere):
 - A sphere of the sky is made and divided in pixels of equal area
 - The pixels are populated with the projection of each event's reconstructed direction on the sphere.
 - The sphere is then smoothed with a Gaussian function
 - The pixel with the maximum number of events is then selected as the initial SN direction → Maximum Likelihood fitting

How much improved by 0.03% Gd?

How much is boosted by HealPix?

• Within 1.5min, SK_SN notice will be sent through GCN Notice

Pre-SN alarm for nearby SNe

	Burning Stage	Duration	Average v energy
0	С	300 years	0.71 MeV
Si He	Ne	140 days	0.99 MeV
H H	0	180 days	1.13 MeV
	Si	2 days	1.85 MeV

Duration of burning stages and the fraction and average energy of electron neutrinos emitted by **pair-annihilation** for a 20 M \odot star (**Astropart.Phys. 21 (2004) 303-313**)

ApJ 885:133, 2019

- Low-BG low-threshold required
 - Liquid scintillators/ Gd-Water Cherenkov
- IBD is the main channel
 - The energy threshold for IBD is 1.8 MeV
 - Large volume is needed.

Odrzywolek, et al 2010 Acta Phys. Pol. B 41, 1611 Patton, et al 2017 ApJ 851 6

6

Pre-SN alarm

The significance of detection based on the

Make the most of SK

• The number of ¹⁶O interactions in SK is still larger than the number of all interactions in other detectors.

10

5

15

20

25

Neutrino Energy [MeV]

30

35

40

45

 $+\bar{\nu}_{\mu}+\nu_{\tau}+\bar{\nu}_{\tau})$

Nakazato model neutrino energy 9

Expected number of interactions in SK for 10kpc SN

	Generated by	Wilson			Nakazato	Nakazato			Mori		
	SKSNSim	No Osc.	NMO	IMO	No Osc.	NMO	IMO	No Osc.	NMO	IMO	
	IBD $(\bar{\nu}_{\rm e})$	7431	8207	9970	3542	3893	4693	3275	3422	3745	
	ES $(\nu_{\rm e})$	223	231	229	173	172	171	177	148	156	
	$\mathrm{ES}~(\bar{\nu}_{\mathrm{e}})$	97	97	98	63	66	72	60	61	63	
	ES (ν_x)	80	79	80	60	60	60	52	57	56	
	$\mathrm{ES}\;(\bar{\nu}_x)$	69	69	69	52	51	48	45	45	44	
ſ	${}^{16}O \ CC \ (\nu_{e})$	44	1034	729	48	180	139	8	86	62	
L	16 O CC ($\bar{\nu}_{e}$)	195	329	633	46	68	116	30	42	71	
L	16 O NC ($\nu_{\rm e}$, 15 N)	4	89	63	4	15	12	1	8	5	
L	16 O NC ($\bar{\nu}_{e}$, 15 N)	22	43	89	5	8	16	3	4	8	
	$^{16}{ m O}~{ m NC}~(u_x, {}^{15}{ m N})$	177	93	119	31	20	23	15	8	10	
L	¹⁶ O NC $(\bar{\nu}_x, {}^{15}N)$	177	156	112	31	28	21	15	14	10	
L	16 O NC ($\nu_{\rm e}$, 15 O)	1	24	17	1	4	3	0	2	1	
	16 O NC ($\bar{\nu}_{e}$, 15 O)	6	12	24	1	2	4	1	1	2	
	$^{16}{ m O}~{ m NC}~(u_x, {}^{15}{ m O})$	48	25	32	9	5	6	4	2	3	
L	^{16}O NC $(\bar{\nu}_x, {}^{15}O)$	48	42	30	8	8	5	4	4	3	
	total	8622	10530	12294	4074	4580	5389	3690	3904	4239	
	Generated by	Hüdelpoh	1		Fischer			Tamborra			
	SKSNSim	No Osc.	NMO	IMO	No Osc.	NMO	IMO	No Osc.	NMO	IMO	
	IBD $(\bar{\nu}_{\rm e})$	3048	3052	3049	1884	1990	2242	3830	3487	2718	
	$\mathrm{ES}~(\nu_\mathrm{e})$	146	124	132	90	87	88	135	82	99	
	$\mathrm{ES}~(\bar{\nu}_\mathrm{e})$	53	53	53	35	35	37	50	45	35	
	ES (ν_x)	43	47	46	31	31	31	28	38	35	
_	$\mathrm{ES}\;(ar{ u}_x)$	38	38	38	27	26	25	25	26	30	
(¹⁶ O CC ($\nu_{\rm e}$)	12	32	26	5	27	21	55	90	80	
	^{16}O CC $(\bar{\nu}_{e})$	30	31	33	15	18	27	97	90	77	
	¹⁶ O NC ($\nu_{\rm e}$, ¹⁵ N)	1	3	2	0	2	2	5	8	7	
	¹⁶ O NC ($\bar{\nu}_{\rm e}$, ¹⁵ N)	3	3	3	1	2	2	11	10	8	
	¹⁶ O NC (ν_x , ¹⁵ N)	6	4	4	5	3	4	16	13	14	
	¹⁶ O NC $(\bar{\nu}_x, {}^{15}N)$	6	6	6	5	4	4	16	17	19	
	¹⁶ O NC ($\nu_{\rm e}$, ¹⁵ O)	0	1	1	0	1	1	1	2	2	
	¹⁶ O NC ($\bar{\nu}_{e}$, ¹⁵ O)	1	1	1	0	0	1	3	3	2	
L	¹⁶ O NC (ν_x , ¹⁵ O)	1	1	1	1	1	1	4	3	4	
	160 NC (= 150)	9	9	1	1	1	1	4	5	5	
L	$(\nu_{\tau}, 0)$	4	4	-					4		

Current limitation

True interactions in SK

What currently can be extracted from SK (online analysis)

Plans to make use of ¹⁶O channel in SK

• They are more complicated topologies than IBD's and ES's.

SciBath

NSC

MARS

Timing Car

2m

• All final state particles should be investigated.

Reconstructed Energy (MeV)

Summary

- Enhancing Supernova Understanding: A multi-messenger astronomy approach combining neutrinos, gravitational waves, and electromagnetic waves plays a pivotal role in comprehending supernova explosions.
- SK's Unique Role, Warning with direction info: The Super-Kamiokande detector is a distinctive and vital instrument for studying supernova explosions within our galaxy.
- **Gd Introduction Advantages:** The incorporation of Gd has significantly enhanced directional accuracy and reduced warning issuance time, improving our ability to study these phenomena. We are advancing alert for the Si-Burning period, working closely with KamLAND.
- Information Extraction Efforts: Our ongoing efforts include extracting more information from ¹⁶O interactions in water. (Suwa-san's talk)
- Towards More Distant and Statistically Significant Events: For insights into more distant supernova explosions, higher statistical significance, and other v sources, Hyper-Kamiokande is under preparation (Asaoka-san' talk)