宇宙・素粒子スプリングスクール2016 プロジェクト研究

ートリノ物理学

大塚 竣太 狩野 芳樹 北出 智巳 中嶋 武 藤本 みのり 目的

<u>ニュートリノ振動を追検証する</u>

梶田所長のノーベル賞受賞理由 「ニュートリノ振動の発見によって、ニュートリノに質量があること を示した」

Q. なぜニュートリノが「振動する」と質量があると言えるのか? Q.「振動する」とはどういうことか? Q. どうしたら確かめられるのか?

<u>ニュートリノとは</u>

弱い相互作用と 重力にのみ反応 →検出が大変

3つのフレーバー がある

ELEMENTARY PARTICLES

フレーバーを 固有値とする 固有関数 α=e,μ,τ

 $|\nu_{\alpha}\rangle = \sum U_{\alpha i}^{*} |\nu_{i}\rangle$

ニュートリノ振動

質量を固有値と する固有関数 i=1, 2, 3

MNS(MAKI-NAKAGAWA-SAKATA)行列

cij= $\cos \theta$ ij and sij= $\sin \theta$ ij

Θ13、Θ23、Θ12、δCPで混合が決まる

ニュートリノの 質量を固有値とする 固有関数の時間発展

$$\begin{aligned} \left| \boldsymbol{v}_{\alpha} \right\rangle &= \sum_{i} U_{\alpha i}^{*} \left| \boldsymbol{v}_{i} \right\rangle \\ \rightarrow \sum_{i} U_{\alpha i}^{*} e^{-im_{i}^{2} z/2E} \left| \boldsymbol{v}_{i} \right\rangle &= \sum_{i} \sum_{\beta} U_{\alpha i}^{*} U_{\beta i} e^{-im_{i}^{2} z/2E} \left| \boldsymbol{v}_{\beta} \right\rangle \end{aligned}$$

2つのフレーバー間の振動

$$\left(\begin{array}{c} |\nu_{\alpha}\rangle \\ |\nu_{\beta}\rangle \end{array}\right) = \left(\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}\right) \left(\begin{array}{c} |\nu_{1}\rangle \\ |\nu_{2}\rangle \end{array}\right)$$

生成点

エネルギーE

観測点

飛行距離L

$$egin{aligned} &
u_eta(t)
angle &= (-sin heta cos heta e^{rac{-im_1^2}{2E}} + sin heta cos heta e^{rac{-im_2^2}{2E}}) |
u_lpha
angle \ &+ (sin^2 heta e^{rac{-im_1^2}{2E}} + cos^2 heta e^{rac{-im_2^2}{2E}}) |
u_eta
angle \end{aligned}$$

$$\langle \nu_{\beta} | \nu_{\beta}(t) \rangle^2 = 1 - sin^2 2\theta sin^2 (\frac{L}{4E} (m_1^2 - m_2^2))$$

フレーバーが βの状態から変わらない確率が求まった

フレーバーが変化しない確率の式からわかること

スーパーカミオカンデ

20インチPMT11129本

水チェレンコフ型宇宙素粒 子観測装置。

太陽ニュートリノ、 大気ニュートリノ、 人エニュートリノなどを観測

1998年、大気ニュートリノの 観測により、ニュートリノ振 動を発見

2001年、太陽ニュートリノ振 動を発見

9

陽子崩壊の探索

超純水50kton

ニュートリノの相互作用

ニュートリノは同ータイプの 荷電レプトンを伴う(レプトン 数の保存)

あるフレーバーのニュートリ ノを観測するには、 同じフレーバーの荷電レプ トンを観測すればよい

Cherenkov放射

β~1の荷電粒子に対し水中(n≈1.34)では0。~42°で一定 ・電荷量eの荷電粒子により単位長さ単位波長あたりに放出される光子数は $\frac{d^2 N}{d\lambda dL} = 2\pi\alpha \left| 1 - \left(\frac{1}{\beta n}\right)^2 \right| \frac{1}{\lambda^2}$

3

チェレンコフリング

> チェレンコフ光を PMTで検出

チェレンコフリングから、 電子とミューオンが99%識別できる!

電子

ミューオン

もやっとしたリング

縁のはっきりしたリング

大気ニュートリノ

宇宙線と大気の原子核の衝突により、ニュートリノが生じる過程

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\pi^{-} \rightarrow \mu^{-} + \overline{\nu_{\mu}}$$

$$\mu^{+} \rightarrow e^{+} + \overline{\nu_{\mu}} + \nu_{e}$$

$$\mu^{-} \rightarrow e^{-} + \nu_{\mu} + \overline{\nu_{e}}$$

$$\frac{(\nu_{\mu} + \bar{\nu}_{\mu})}{(\nu_{e} + \bar{\nu}_{e})} \approx 2$$

大気ニュートリノとニュートリノ振動

上からくるニュートリノ: 大気の厚さ分進む

下からくるニュートリノ: 地球と大気の厚さ分進む

大気ニュートリノを水チェレンコフ型検出器で測ってわかること

チェレンコフ光が出始めた場所、時間、電荷

ニュートリノの運動方向 (進んだ距離) ニュートリノのエネルギー →振動の位相

リングの形 →ミューオンか 電子か

<u>ニュートリノ振動検出の追検証のために</u>

スーパーカミオカンデと同様の検出原理のま めカミオカンデを用いて、 ①チェレンコフ光を観測し、 ②電子ニュートリノとミューニュートリノが判別 できるか確かめたい!

まめカミオカンデ(水チェレンコフ型検出器)

まめカミオカンデでチェレンコフ角を測定してみる。

チェレンコフ光の検出

まめカミオカンデのセットアップ

シンチレータ(1)

シンチレータ2

まめカミオカンデ

まめカミオカンデのセットアップ

様々な方向から来る 荷電粒子を検出する ことができないので、 鉛直方向から来たも のだけを使う。

シンチレータ2

解析アルゴリズム

荷電粒子が通った位置と推定

1. PMTの電荷の最大の位置を 光が通過した位置とした。

2. 10以上の電荷の最小の地点 をリングの端とした。

3. この2点の距離と水の深さ からチェレンコフ角を求めた。

解析アルゴリズム

荷電粒子が通った位置と推定

1. PMTの電荷の最大の位置を 光が通過した位置とした。

2. 10以上の電荷の最小の地点をリングの端とした。

3. この2点の距離と水の深さ からチェレンコフ角を求めた。

底辺と推定

解析アルゴリズム

荷電粒子が通った位置と推定

1. PMTの電荷の最大の位置を 光が通過した位置とした。

2. 10以上の電荷の最小の地点 をリングの端とした。

3. この2点の距離と水の深さ からチェレンコフ角を求めた。

実験結果

計数

実験結果

計数

予想値と実験値の差

荷電粒子が通った位置と推定

チェレンコフ角を求めるのに 使う底辺を小さく設定してし まった。

斜めに入ってくる宇宙線

観測できる チェレンコフリング 大きさ 小 ³⁴ 宇宙線の中心点©

角度を持って入ってくる宇宙線

Event 35 hpmt Entries Mean 7.098 RMS 2.222

PMTの分解能の限界 直系分の長さ3.11cmは区別できない。

3.11cm

まめカミオカンデによる 電子とミューオンの判別

モチベーション

ニュートリノ振動を見るためには電子ニュートリノとミューニュートリノを判別する必要がある。

レプトンフレーバー保存則から2種のニュートリノの判別するには 電子とミューオンの判別が出来ればよい

まめカミオカンデでも電子とミューオンを判別できないか? レプトンフレーバーがわかるパラメータを求めたい!

⇒ミューオンの崩壊で出てくる電子を利用

シンチレータ1層目

ミューオン崩壊による電子放出の確認

イベント数

fitting結果 寿命:

460-108+201ns

文献値との比較

2.1µs(真空中) 860ns(AI中)

Time [ns] ⇒電子が放出されているのは間違いない! ではどうやってミューオンと電子を見分けるか?

電子・ミューオンの判別

スーパーカミオカンデでは電子かミューオンかを Cherenkov Ring の輪郭が はっきりしているかで判別している →PMTが1列状に並んだまめカミオカンデでもエッジがでる ようなパラメータが判別に適すると考えられる

角度分布

電子の方が小さい角度が出ていることが分かる ⇒水に入る際の散乱の影響を電子の方が強く受ける と考えられる

考えたパラメータX

電荷Q

電荷量Qがしきい値10の端に 該当するチャンネルを二つ (A,Bとする)

(Q(A+1)+Q(A-1)-2*Q(A))**2
と
(Q(B+1)+Q(B-1)-2*Q(B))**2
のうち小さい方をXとする

45

エッジがしっかり見えているようなイベントだとXの値も 大きくなる ⇒Xが大きいほどミューオンlikeと予想できる

likehood1 likehood1 h1 h1 Entries 74 102 Entries 16 25 292.3 271 Mean Mean RMS 245 RMS 262.7 14 20 12-ミューオン イベント数 電子 10-15 10 0 0 100 200 200 0 100 200 300 400 500 600 700 800 900 10 100 200 300 400 500 600 700 800 900 1000 800 900 1000 e-like μ-like e-li<u>ke</u> u-like パラメータX

ミューオンの方が大きい値のところに多めに出ている しかしイベント数がとても少ないため、十分に判別できる かは言えない。

パラメータX

水のCHERENKOV角 測定解析

- 水のCherenkov角: 42degrees
- マメカミオカンデCherekov角に関する 観測可能な量
 1.vertex(相互作用の起こった時空)
 2.運動方向
 3.エネルギー
- PMTより

マメカミオカンデの観測からみ図

ここまでのまとめ

チェレンコフ角の特定ができるようになった
ミューオンと電子の識別ができるようになった

準備万端! いざ、ニュートリノ振動解析へ

ニュートリノの飛来距離

入射角々にsよって、 ニュートリノの飛行距離Lが変わる

 $L(\cos\phi)=-R\cos\phi + sqrt\{(R\cos\phi)^2+r^2+2rR\}$

距離が違えば、ニュートリノ振
動によりフレーバーが変わる
例えば
$$\Delta m^2$$

 $\langle \nu_{\beta} | \nu_{\beta}(t) \rangle = 1 - sin^2 2\theta sin^2 \left(\frac{L}{4E} \left(m_1^2 - m_2^2\right)\right)$

□:スーパーカミオカンデ
 ●:ニュートリノ発生源
 ④:入射角 L:発生源からSK
 R:地球の半径 6371km
 Γ:大気の厚さ 15km

1998年、大気ニュートリノ振動の発見

どれくらいの信頼度だったのか? U:上方向に向かうµニュートリノ D:下方向に向かうµニュートリノ

> U-D/U+D=-0.296 $\sigma = 0.0481$

この値は、6.16 σもずれていて、ニュート リノ振動の発見といえる!

スーパーカミオカンデの最新データ(去年9月まで) では…

cosθ	-1	-0.8	-0.6	-0.4	-0.2	0.2	0.4	0.6	0.8	1
SK (233 9.25 日)	83	67	74	81	83	130	148	139	160	152

U=305 D=599 U-D/(U+D)=0.325 σ = 0.0315

10.3 σの信頼度! ニュートリノ振動は 間違いなくある!

ニュートリノ振動パラメータの決定

- ニュートリノ振動が確かに起こっていることが分かった
- ・次は、データを基にニュートリノ振動における重要なパラ メータである混合角 θ と質量二乗の差 Δ m² を求めたい
- ここでは、μニュートリノとτニュートリノの二つの世代間のニュートリノ振動を仮定

ニュートリノパラメータの決定における仮定

- すべての要素を考慮することは厳しいので、簡単のため以下の仮定をした。
- 統計誤差は実験データのみ考え、MCの統計誤差は小さいので無視
- 系統誤差は非常に小さいので無視
- エネルギーはすべて5GeV仮定
- cos θ =0.2 ごとのMCによるニュートリノのデータとスーパーカミオカン デの測定値を用いる

соsф	-1	-0.8	-0.6	-0.4	-0.2	0.2	0.4	0.6	0.8	1
SK(2339. 25日)	83	67	74	81	83	130	148	139	160	152
mc(500 年)	12337.7	12827.3	12985.9	13548.1	13972.8	13725.3	13656.8	12990.2	12532.4	12483

ニュートリノパラメーターの決定方法

梶田さんの論文では、次の x² が小さくなるようにパラメータを決めていた。

 $\chi^2 = \sum_{\cos\Theta,p} (N_{\text{DATA}} - N_{\text{MC}})^2 / \sigma^2 + \sum_j \epsilon_j^2 / \sigma_j^2$ 統計誤差 SKのデータ 系統誤差 ニュートリノ振動で、 μニュートリノから $\frac{\mathcal{L}_{\text{DATA}}}{\mathcal{L}_{\text{MC}}}$ 変化しない確率を代入 $N_{\rm MC} =$ W. MC events 55 各イベントの確率

系統誤差の

パラメータ

実験結果

ニュートリノ振動を考慮しない 場合(青)の時よりも、ニュート リノ振動を考慮した場合(赤) のほうが、良く実験データに フィットしている

しかし、θ が0度付近では、 予測値と実験データの差が 大きかった

multi GeV 1R mu-like

フィッテイングの精度が落ちてしまった原因としては

- 系統誤差を考慮していない
- 各イベントごとに見るべき、エネルギーと距離を一定にしてしまっている
- $\phi = 0$ 付近からのニュートリノの不定性

混合角と質量の二乗差

• $\sin 2\theta^2$ 7.10764e-001± 3.52892e-00 2

- △ m² 8.04801e-004 ± 2.64240e-005 であったが 現在決定されている値は
- $\sin 2\theta^2 = 0.999 \pm 0.018$
- Δm²=(2.44±0.06)*e-3
 誤差のオーダーは同じであるが、
 両ニュートリノ振動パラメータとも、
 決定されている値の誤差の範囲からも
 外れてしまっている

フィッティングが完全にはう まくいかなかったのは、ど うしてか?

ニュートリノパラメーターの決定方法

梶田さんの論文では、次の χ² が小さくなるようにパラメータを決めていた。

 $\chi^2 = \sum_{\cos\Theta,p} (N_{\text{DATA}} - N_{\text{MC}})^2 / \sigma^2 + \sum_j \epsilon_j^2 / \sigma_j^2,$ 統計誤差 SKのデータ

 $N_{\rm MC} = \frac{\mathcal{L}_{\rm DATA}}{\mathcal{L}_{\rm MC}} \sum_{\rm MC \ events} w \,.$

各イベントの確率

系統誤差の

パラメータ

系統誤差

詳しいモンテカルロシミュレーションの補正

本来なら、多くのパラメータがフィッテイ ングに使われている。 特に、今回はエネルギーやエネルギー を平均しているので影響が大きいと考え られる

$$N_{\rm MC} = \frac{\mathcal{L}_{\rm DATA}}{\mathcal{L}_{\rm MC}} \sum_{\rm MC \ events} w \,.$$

$$w = (1 + \alpha) (E_{\nu}^{i}/E_{0})^{\delta} (1 + \eta_{s,m} \cos \Theta)$$

$$\times f_{e,\mu}(\sin^2 2\theta, \Delta m^2, (1 + \lambda L/E_{\mu}))$$

$$\times \begin{cases} (1 - \beta_s/2) & \text{sub-GeV } e\text{-like}, \\ (1 + \beta_s/2) & \text{sub-GeV } \mu\text{-like}, \\ (1 - \beta_m/2) & \text{multi-GeV } e\text{-like}, \\ (1 + \beta_m/2)\left(1 - \frac{\rho}{2}\frac{N_{PC}}{N_{\mu}}\right) & \text{multi-GeV } \mu\text{-like}, \\ (1 + \beta_m/2)\left(1 + \frac{\rho}{2}\right) & \text{PC}. \end{cases}$$

ニュートリノと反応後の荷電粒子の進行方向には、不定性がある ⇒面積の広い横からの θ =0の入射が一番影響を受けるはず

まとめ

今回の実験を通して

- 水チェレンコフ光を観測した
- 電子とミューオンを個別に観測した
- ニュートリノ振動が確かにあることを解析によって確認し、
 ニュートリノ振動パラメーターを決定した

私たちは、自分たちの手によって、 ニュートリノ振動することを全員で確認 し、追検証することができた!!!

Supervisorの西村康宏先生、TAの Tsui Ka Mingさん、阿久津良介さん、 本当にありがとうございました!

[1]Super-KamiokandeCollaboration, Phys.Rev 81,8(1998)
[2]Particle Data Group
[3]The T2K Collaboration 2013. http://t2k-experiment.org/ja/