High energy gammaray astronomy

Daniel Mazin ICRR, University of Tokyo

Spring School 2016, ICRR

Thanks to material from R. Ong, W. Hofmann, L. Stawarz, J. Holder, K. Bechtol, and the MAGIC collaboration

Contents

- 1. Multiwavelength sky
- 2. How to produce gamma rays?
- 3. How to detect gamma rays?
- 4. What do we learn from gamma rays?
 - 4.1. Origin of cosmic rays
 - **4.2. Source Physics**
 - 4.3. Observational Cosmology
 - 4.4. Fundamental physics
- 5. Future of gamma-ray astrophysics

From protons

- Pion decay
 - Accelerated protons (p) interact with matter
 - p $p \rightarrow X + \pi_0 \rightarrow \gamma \gamma$
- Proton Synchrotron Emission
 - Depends on magnetic field strength (not dominant under typical conditions)

From electrons

- Inverse Compton Scattering
 - Collide highly relativistic electrons with photons from stars or the microwave background

$$e^{-} + \gamma_{Low E} \rightarrow e^{-} + \gamma$$
$$E_{\gamma} \propto (\gamma_{Lorentz})^{2} E_{\gamma Iow E}$$
$$\gamma_{Lorentz} = 1/\sqrt{(1 - v_{e}^{2}/c^{2})}$$

From electrons

- **Bremsstrahlung** (free-free emission)
 - Electron deceleration by a nucleus
 - Highly relativistic electrons emit gamma rays in atomic or molecular material
 - $Energy_{\gamma} \sim Energy_e$

Other ways to produce gamma rays

- Topological defects left over from the Big Bang?
 - Hypothesis: Black holes formed with the early Universe decay
- By-product of dark matter interactions?
 - Hypothesis: weakly interacting massive particles (WIMPs) interact to produce gamma rays:

 $DM + DM \rightarrow \gamma \gamma$

WIMP + WIMP $\rightarrow \gamma + \gamma$

Victor Hess and his "Flight Ops Team", 1912

Cosmic Ray Spectra of Various Experiments

GAMMA RAY TELESCOPES

Space-based pair production telescopes

Air shower Arrays

0.1 – 100 GeV Small area Background-free Large field of view High duty cycle

50 GeV – 100 TeV Large area Excellent bg rejection Small field of view Low duty cycle

100 GeV – 100 TeV Large area Good bg rejection Large field of view Large duty cycle

Imaging Atmospheric Cherenkov Telescopes: The Big Three

Characteristics of current generation of IACT arrays:

- Energy threshold E = 25 to 100 GeV
- Point-source integral flux sensitivity: 0.5 to 1.0 % of the Crab Nebula flux in 50 h (above 200 GeV, >100 times more sensitive than Fermi-LAT in 1 year)
- Angular resolution < 0.1^o
- Energy resolution ≈ 15%

Atmospheric showers and Cherenkov radiation

Atmospheric showers and Cherenkov radiation

Imaging Atmospheric Cherenkov Telescopes: Detection technique

Imaging Atmospheric Cherenkov Telescopes: Detection technique

Air Shower Arrays. State of the Art is HAWC

3 Hamamatsu R5912 +1 Hamamatsu R7081

Gamma and Cosmic rays interact with water in tanks or pools and produce Cherenkov radiation that is then detected by PMTs

3. How to detect gamma rays? Sensitivities

Origin of cosmic rays

- gamma rays are not deflected by intergalactic and galactic magnetic fields, they point directly to their origin
- gamma rays can travel cosmological distances without absorption (caution: not true for E>100GeV)
- Source Physics: learn about environment (objects) that emit such gamma rays
- Observational Cosmology: use gamma ray sources as beacons to probe the star formation history and Hubble parameter
- Fundamental physics: dark matter searches, Lorentz invariance violation, axion like particles

Crab Nebula

a non-thermal astrophysical object seen over 20 decades in energy

Crab Nebula

a non-thermal astrophysical object seen over 20 decades in energy

Galactic Center

- H.E.S.S. I observations now comprise 220 hours (>100σ)
- Point source at SgrA*, plus a diffuse component correlated with Molecular Clouds
- Diffuse component contributes ~20% at SgrA*, and shows no cut-off
- Subtracting it allows a measurement of the intrinsic point source spectrum
 - Cut-off shifts from 11 TeV to 7 TeV

D. Mazin, ICRR, University of Tokyo —- High Energy Gamma-Ray Astronomy —- Spring School 2016, March

Galactic Center: Fermi Bubbles

Origin of Cosmic Rays = SNRs ?

Why (VHE) gamma rays?

- Unlike cosmic rays, not deflected by interstellar magnetic fields.
- Tracers of parent particle populations those particles accelerated by shocks.

SNR Image (RXJ 1713-3946)

Accelerated electrons Accelerated protons \rightarrow VHE γ -rays \rightarrow VHE γ -rays Up-scattering of soft photons Target interaction, π^0 decay \mathcal{W} \mathcal{P} \mathcal{P} \mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W} <

Pulsars: >100 in Fermi, 2 in TeV

- New results for the Crab pulsar coming soon: "sharp peaks and possible bridge emission"
- MAGIC gave 75 hour upper limits to emission from Geminga >50GeV
- VERITAS uses the Crab pulsar to search for Lorentz invariance violation.
 - Limits the energy scale to 3x1017 GeV

Pulsars: >100 in Fermi, 2 in TeV

- New results for the Crab pulsar coming soon: "sharp peaks and possible bridge emission"
- MAGIC gave 75 hour upper limits to emission from Geminga >50GeV
- VERITAS uses the Crab pulsar to search for Lorentz invariance violation.
 - Limits the energy scale to 3x1017 GeV

PKS 2155 (>200 GeV) [10 ^a cm² s¹ Extremely variable on all time scales Relativistic jets with large Lorentz factors >1000 Fermi blazars, 60 in TeV regime

4. What do we learn from gamma rays?

BLAZARS

D. Mazin, ICRR, University of Tokyo —- High Energy Gamma-Ray Astronomy —- Spring School 2016, March

100

Time - MJD53944.0 [min]

Radio galaxies

• M87: best studied radio galaxy

D. Mazin, ICRR, University of Tokyo —- High Energy Gamma-Ray Astronomy —- Spring School 2016, March

GRBs

GRB 080916C

- Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies.
- In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured.
- The high-energy gamma rays are observed to start later and persist longer than the lower energy photons.

 $z = 4.35 \pm 0.15$

D. Mazin, ICRR, University of Tokyo —- High Energy Gamma-Ray Astronomy —- Spring School 2016, March

4.4 Fundamental physics: dark matter

Theoretical dark matter sky

(annihilation)

Galactic Halo

Galactic Subhalos

Aquarius simulation

Fermi-LAT, 5 years, >1 GeV

Extragalactic

Observed GeV gamma-ray sky

Galactic Center Excess

Consistent spectral form observed over much of the inner Galaxy extending at least 10° (1.5 kpc) from Galactic Center

Calore et al. 2015, JCAP, 03, 038 arXiv:1409.0042

Inner Galaxy: Residual Emission

Galactic longitude (deg)

3 3 2 -2 2 -1 3

Galactic longitude (deg)

5. Future of Gamma-Ray astrophysics

Low-energy section: 4 x 23 m tel. (LST) - Parabolic reflector - FOV: 4-5 degrees energy threshold of some 10 GeV

(one) possible configuration Southern 100 M€ Array (2006 costs)

Core-energy array:

23 x 12 m tel. (MST) Davies-Cotton reflector - FOV: 7-8 degrees mCrab sensitivity in the 100 GeV–10 TeV domain

Core array expansion with dual-mirror telescopes **High-energy section:**

30-70 x 4-6 m tel. (SST) Davies-Cotton reflector (or Schwarzschild-Couder) - FOV: ~10 degrees 10 km² area at multi-TeV energies

Cherenkov Telescope Array

D. Mazin, ICRR Seminar, December 16, 2014

Cherenkov Telescope Array

D. Mazin, ICRR Seminar, December 16, 2014

5. Future of Gamma-Ray astrophysics

5. Future of Gamma-Ray astrophysics

Large Size Telescopes of CTA

Large Size Telescope of CTA

5. Future of Gamma-Ray astrophysics

The corner stone ceremony at ORM La Palma 2015 Oct

Your future

BACKUP

Search for Cold Dark Matter

Indirect detection of WIMP annihilation $\rightarrow \gamma$, v etc. $\chi + \chi$ \overline{p} $\nu, \overline{\nu}$ γ continuum γ lines Point back to source Event back to source (Diffusion) (PAMELA,AMS,GAPS)

Hypothesis: DM = WIMPs

.

Target regions with:

- Favorable DM distributions.
- Large mass/light ratio.

Galactic

Simulated y-ray signature in galaxy Taylor & Babul (2005)

Complementary approach to direct detection & LHC Goal is to do DM astronomy !

EBL

MAGIC, Science 320,1752 (2008)

MAGIC, accepted by A&A, arXiv:1602.05239

Not much more EBL than the one from the resolved galaxies

4.4 Fundamental physics: Lorentz invariance violation

Quantum Gravity ?

5. Future of Gamma-Ray astrophysics

D. Mazin, ICRR, University of Tokyo —- High Energy Gamma-Ray Astronomy —- Spring School 2016, March

5. Future of Gamma-Ray astrophysics

CTA in MWL context

Flux sensitivity for steady sources

Flux sensitivity for transient sources

