CTA小型望遠鏡用カメラの開発

Hiro Tajima, Akira Okumura, Naoya Hidaka Solar-Terrestrial Environment Laboratory, Nagoya University Stefan Funk, Leonid Sapozhnikov, Justin Vandenbroucke SLAC National Accelerator Laboratory Kavli Institute for Particle Astrophysics and Cosmology Richard White, Jim Hinton Department of Physics and Astronomy University of Leicester

NATIONAL ACCELERATOR LABORATORY

Small-sized Telescopes (SSTs)

single mirror

- CTA consist of LST, MST and SST
 SST observes gamma rays above a few TeV
 - Flux is much lower than ~TeV gamma rays
 - Large collection area is required
 - * Large number of inexpensive telescopes
 - Smaller mirrors < 6 mΦ</p>

herenkov telescope array

- Camera cost becomes dominant
- Development of inexpensive camera
 - Multi-channel photon sensors
 - SiPMs and MAPMTs
 - Multi-channel waveform recording ICs
 - Reduction of electric parts by integration of functionalities
 - Small pixel size requires short focal length by dual-mirror tel.

CTA小型望遠鏡用カメラの開発 宇宙線研究所共同利用研究成果発表会

dual mirror

0.55 m

1.5 m

1.4 m

Ground level

0.8 m

SC-SST Camera Design

***** SC-SST camera parameters

	32 mod
FOV for 0.18°/pixel (36 mm/°)	8.6°
FOV for 0.28°/pixel (23 mm/°)	13.4°
Angular pixel size for FOV=10°	0.21°
# of pixels per camera	2,048
Power consumption per camera (FE)	145 W
Weight per camera (FE+MAPMT)	11 kg
Total cost (FE+BE) for 50 CAMs*	\$2.0M

*Assuming \$20/ch, which does not explicitly include labor for mechanical module assembly and calibrations

FE (front-end) board configuration

- Sensor board (MAPMT or SiPM array, routing for 4x4 analog sum trigger)
- ASIC board (16 channels per board)
- FPGA board: FPGA, data link connector
- Power supply board: DC/DC converter, HV supply
- Minimize # of components for cost reduction and reliability
 - Integration of necessary functionalities into an ASIC

Waveform sampling ASIC specifically designed for CTA

Switched capacitor array + Wilkinson-type ADC

Integrated trigger circuits

		TARGET-1 (measured)	TARGET-5 (expected/measured/new)	
# of channels		16	16	
# of cells/channel		4,096	16,384	
Sampling frequency		0.5 – 2.5 GHz	0.4 – 1.2 GHz	
Bandwidth		150 MHz	> 380 MHz	
Crosstalk (@ -3dB)		4%	<1%	
Dynamic range		~10 bits (~1 mV/1 V)	10.5–11.2 bits (0.6–1.0 mV/1.5 V)	
Digitization time		1 µs (9 bit), 2 µs (10bit)	1.1 μs (10 bit), <mark>4.6 μs</mark> (12 bit)	
# of cells/digitization		16 cells x 2 ch	32 cells x 16 ch	
Data transfer speed		_	100 Mbps x 16 ch	
Dead time	10 bit	49 µs	<mark>2.3 + 7.2 μ</mark> s	
(48 cells/ch)	12 bit	197 μs	9.1 + 7.2 μs	
# of trigger output		1 (OR of 16 triggers) 4 (analog sum of 4 ch) +		

CTA小型望遠鏡用カメラの開発

宇宙線研究所共同利用研究成果発表会

- Development of TARGET-5 to address issues found in TARGET-2
- TARGET-5 (qty. 240) was delivered to Nagoya/STEL on Aug/24
- Initial measurements indicate TARGET-5 satisfy requirements
 - Dynamic range, crosstalk, bandwidth are most critical
 - Evaluation of trigger performance in progress

cherenkov telescope arrav

TARGET5 designed by Gary Varner

Comparison of Photon Detectors

	MPPC(SiPM)	MAPMT	HPD	APD
Size	55 mm	52 mm	73 mm	
Pixel size	6.0 mm	6.1 mm	4.9 mm	
# of pixels	8x8	8x8	12x12	_
aperture ratio	<mark>69–76%</mark>	89%	64%	
Q.E. (peak)	65%	27–35%	32%	85%
peak wavelength	450 nm	340–380 nm	360 nm	~800 nm
Gain	~10 ⁶	10 ⁴ –10 ⁶	10 ⁴ –10 ⁵	10–100
HV	30–70 V	1–2 kV	8 kV	100–500 V
Timing	30 ps	~100 ps	~100 ps	~ 1 ns
Cost (kJPY)	125	138		_
Dynamic range	~10 ³	~10 ⁶	>10 ⁵	
Dark noise rate	10 ³ -10 ⁶ Hz			

CTA小型望遠鏡用カメラの開発

宇宙線研究所共同利用研究成果発表会

Calculation of Cherenkov Light Yield

- Integrate Cherenkov light spectrum weighted by photon detection efficiency up to 550 nm
 - Avoid Oxygen fluorescent line

cherenkov telescope arrav

Calculation of Cherenkov Light Yield

- Integrate Cherenkov light spectrum weighted by photon detection efficiency up to 550 nm
 - Avoid Oxygen fluorescent line

cherenkov telescope arrav

宇宙線研究所共同利用研究成果発表会

Calculation of Cherenkov Light Yield

- Integrate Cherenkov light spectrum weighted by photon detection efficiency up to 550 nm
 - Avoid Oxygen fluorescent line

cherenkov telescope arrav

***** MPPC (Multi-Pixel Photon Counter) by HPK

Characterize performance under possible conditions

Study requirements on camera temperature control

***** MPPC (Multi-Pixel Photon Counter) by HPK

Characterize performance under possible conditions

Study requirements on camera temperature control

***** MPPC (Multi-Pixel Photon Counter) by HPK

Characterize performance under possible conditions

Study requirements on camera temperature control

- Making good progress in TARGET ASIC development
 - Trigger performance needs adjustments
- MPPC performance being characterized
 - Cooling may be required to maximize photon detection eff.
- Fabrication of a complete prototype of MPPC SST camera by late 2014
 - * to be mounted on prototype SSTs in 2015

Supplemental slides

CLC cherenkov telescope array SC-MST/SST Camera Design Concept

Modular camera design

Divided into subfields

Logical unit for trigger generation, easy maintenance

CLd cherenkov telescope array SC-MST Camera Electronics Overview

SC-MST Camera electronics consists of

- Camera modules: ~180/camera (~11k pixels)
 - 4 64-channel PMT/GAPD + front-end electronics
 - Waveform sampling and digitization, 16 triggers

Subfield boards: 9/camera (25 modules/board)

- Cross-link trigger information
- Subfield trigger

Camera backplane

- Camera trigger
- Gb ethernet
 link to DAQ
 (or any other
 commercial solution)

Input voltage range: 0.6 – 2.1 V

Noise: 0.6 – 1.0 mV

✤ Dynamic range: 1.5 V/(0.6 – 1.0 mV) = 10.5 – 11.2 bits

Better noise at lower voltage prefers positive pulse

Cross talk is less than 1% up to ~380 MHz
Band width up to 480 MHz

* Root cause of oscillating behavior under investigation

***** SC-MST camera parameters

***** SC-MST General requirements

therenkov telescope array

- Target cost: \$15 per channel
 - ✦ Large # of pixels ~ 500k
 - More telescope, wider FOV, smaller pixels
 - Current cost estimates (conservative estimate)
 - Camera FE module: \$19/ch (11k channels), \$12/ch (500k ch)
 - Back-end electronics: \$6/ch (11k channels), \$4/ch (500k ch)
 - PMT, mechanical structure and calibrations not included
- Reliability: low failure rate to minimize maintenance efforts
 - Integration of "necessary" functionalities (small # of components)

***** SC-MST requirements for camera front-end electronics

- Waveform sampling at ~ 1 GSa/s
- Signal bandwidth > 380 MHz
- Cross-talk < 1%</p>
- Look-back time: > 12 μs
- Dynamic range: > 9 bits
- Readout (dead) time: < 30 μs</p>
- Trigger timing: < 4 ns</p>
- Trigger segment: 0.1° x 0.1° ~ 0.2° x 0.2°

TARGET ASIC designed for CTA by G. Varner (Univ. of Hawaii)

宇宙線研究所共同利用研究成果発表会