Knee領域および最高エネルギー領域での 宇宙線反応の実験的研究 (LHCf 実験)

增田公明(名大STE研) LHCf collaboration 東大宇宙線研 福島正己 他

2012年12月8日 平成24年度 宇宙線研究所 共同利用研究成果発表会

共同利用研究課題

- LHC加速器の 900GeV ~ 14 TeV (ビーム当たり 450 GeV ~ 7 TeV) 陽子-陽子衝突によって生成される最前方中性粒子を測定し、宇宙線反応に寄与するハドロン相互作用モデルの検証を行う(LHCf 実験)。
- ・陽子-原子核衝突でもデータを取得し,宇宙線 と大気の反応の理解に近づく。
- 相互作用モデルの違いによる10¹⁷~10²⁰eVの宇 宙線観測データの解釈に関して、TAグループ等 と検討及び議論を行う。

平成24年度共同利用予算

- 査定額 旅費 200千円(名古屋一柏)
 - 宇宙線研でTAグループ等と種々の議論を行う
 - 「最高エネルギー宇宙線実験の研究会」(H24.10)の旅費に使用
 - 12-3月の研究会等で使用予定
- 共同利用計算機の使用
 - MCシミュレーション
 - データ解析

LHCf Japan (17名)

名大STE研

村木綏*, 伊藤好孝, <u>增田公明</u>, 松原豊, 塔隆志**, 三塚岳, 川出健太郎, 磯利弘, 牧野友耶, 松林恵理 名大KMI 毛受弘彰 神奈川大学工 田村忠久

早稲田大学理工総研

鳥居祥二, 笠原克昌, 鈴木拓也

芝浦エ大システムエ 吉田健二

JAXA 清水雄輝

* spokesperson, ** technical coordinator

LHCf collaboration (6か国, 32名)

LHCf Japan

(Univ. di Firenze)

O. Adriani, L. Bonechi, M. Bongi, G.Castellini, R. D'Alessandro, M. Grandi, P. Papini, S. Ricciarini (Univ. di Catania) K. Noda, A. Tricomi

Spain

(Centro Mixto CSIC-UVEG, Valencia) D.A. Faus, J. Velasco France (Ecole-Polytechnique, Paris) M. Haguenauer USA (UC Berkeley) W.C. Turner Switzerland (CERN) A.-L. Perrot

Physics Motivation

LHCf 実験の概要

- 加速器実験でハドロン相互作用モデルを検証する
- CERNの最高エネルギー加速器 LHC(Large Hadron Collider)で、450GeV×450GeV ~
 7TeV×7TeV陽子ー陽子衝突実験を行い、最前方放出中性粒子を測定する
- 実験室系4×10¹⁴eV~1×10¹⁷eVの宇宙線反応と 等価
- その結果から10¹⁷eVまでのハドロン相互作用モデ ルを検証し、さらにこれより高い超高エネルギー宇 宙線観測データの正しい解釈を行う

The LHCf detectors

• W (44 r.l , $1.7\lambda_I$) and Plastic Scintillator x 16 Layers

- 4 positioning layers XY-SciFi(Arm1) and XY-Silicon strip(Arm#2)
- Each detector has two calorimeter towers, which allow to reconstruct π^0

Performance

Energy resolution (> 100GeV) < 5% for photons for neutrons 30% Position resolution < 200µm (Arm#1) 40µm (Arm#2)

Front Counter

- Thin scintillators with 80x80mm²
- To monitor beam condition.
- For background rejection of beam-residual gas collisions by coincidence analysis

LHCf 準備経過

年月	項目
2004年 5月	Letter of Intent
2004年 7月	プロトタイプ検出器テスト(SPS/CERN)
2005年10月	Technical Report
2006年 2月	Technical Design Report
2006年 6月	実験承認(LHC Committee)
2006年 8月	Arm#1 検出器較正(SPS)
2007年 8月	Arm#1/#2 検出器較正(SPS)
2008年 1月	Arm#1/#2 検出器 最終インストール

Phase- I 測定

年月	項目
2009年12月	√s=900GeV陽子-陽子衝突の測定 28時間、約6,600 shower eventsの取得 @Luminosity ~10 ²⁶ cm ⁻² s ⁻¹
2010年2月	√s=7TeV陽子-陽子衝突の測定
~ 7月	150時間、約4x10 ⁸ shower events, $10^6 \pi^0$ events
	√s=900GeV陽子-陽子衝突の測定
	15時間、約10 ⁵ shower events の取得 @Luminosity ~10 ²⁷ cm ⁻² s ⁻¹
2010年7月	Phase- I 測定完了,ビームラインより検出器撤去
2010年10月	Arm#1/#2 事後較正(SPS)
2011年~	データ解析
	検出器 upgrade

解析, 論文発表の状況

Year	Correspond- ing author	Journal	Title
2011 Aug	T. Sako	PLB	Measurement of zero degree single photon energy spectra for $\sqrt{s} = 7$ TeV proton-proton collisions at LHC
2011 Sep	K. Kawade	JINST	Study of radiation hardness of Gd ₂ SiO ₅ scintillator for heavy ion beam
2012 Jan	K. Taki	JINST	Luminosity determination in $\sqrt{s} = 7$ TeV proton collisions using the LHCf Front Counter at LHC
2012 Apr	T. Mase	NIM A	Calibration of LHCf calorimeters for photon measurement by CERN SPS test beam
2012 Aug	Y. Itow	PLB	Measurement of zero degree inclusive photon energy spectra for $\sqrt{s} = 900$ GeV proton-proton collisions at LHC
2012 Nov	G. Mitsuka	PRD	Measurement of forward neutral pion transverse momentum spectra for $\sqrt{s} = 7$ TeV proton-proton collisions at LHC

解析中中性子スペクトル宇宙線観測への影響

2012年度の進捗状況

時期	場所	項目	
6月	放医研 HIMAC	Arm#1 upgrade 検出器(GSO)のテスト, calibration(発光量, 位置依存性)	
8月	CERN SPS	Arm#1 upgrade 検出器の較正 Arm#2 p-Pb実験のための較正	
12月	CERN LHC	Arm#2 p-Pb実験のためのインストール	
2-3月	CERN LHC	p-Pb 衝突実験	
2013年度		Arm#2 upgrade	

- ▶ 2013年 1-2月 LHC p-Pb衝突での測定
- ▶ 2014年 Arm#1, Arm#2 SPS実験
- ▶ 2015年 13-14TeV p-p衝突での測定(phase II)
- ▶ 2016年- RHIC 窒素衝突? 2019年- LHC 酸素衝突?

Global LHCf physics program

LHCf measurement for p-Pb interactions at 3.5TeV proton energy could be easily and finely integrated in the LHCf global campaign.

Period	Туре	Beam energy	LAB proton Energy (eV)	Detector
2009/2010	p - p	450+450 GeV	4.3 10 ¹⁴	Arm1+Arm2
2010	p - p	3.5+3.5 TeV	2.6 10 ¹⁶	Arm1+Arm2
2013	p – Pb	3.5 TeV proton E	10 ¹⁶	Arm2
2015	p - p	7+7 TeV	10 ¹⁷	Arm1+Arm2 upgraded

最前方ガンマ線スペクトル(7TeV) Arm1とArm2の比較

Arm1とArm2は系統誤差内で一致

最前方ガンマ線スペクトル@√S=7TeV p-p Data Error bars : Statistical errors, Gray hatch: Systematic errors

DPMJET 3.04 QGSJET II-03 SIBYLL 2.1 EPOS 1.99 PYTHIA 8.145

最前方ガンマ線スペクトルの比較(7TeV)

- 実験データとシミュレーションの比較より、どのモ デルも完全にはデータを再現出来ていない
- ・ DPMJETとPYTHIAは2TeV以上で違いが大きい
- QGSJETとEPOSは全体に生成率が低く、2TeV以
 上で特に顕著
- 一方,実験データの感度は系統誤差により制限 されているため,系統誤差を詳しく見積もる事が 今後の課題

Arm1とArm2の比較(900GeV)

シミュレーションとの比較(900GeV) Arm1とArm2を加重平均したガンマ線スペクトルを比較 Models: DPMJET3.04, QGSJET II 03, SIBYLL2.1, EPOS1.99, PYTHIA1.45

シミュレーションはPIDを除いてデータと同じ解析 データとシミュレーションは断面積oで規格化 ルミノシティー決定の誤差21%(一律)は非表示

実験データとシミュレーションの比(900GeV)

Models: DPMJET3.04, QGSJET II 03, SIBYLL2.1, EPOS1.99, PYTHIA8.145

EPOS 1.99とSIBYLL 2.1の形は比較的一致 他のモデルは高エネルギー(>300GeV)で明らかに超過

900GeVと7TeVの比較(X_F分布)

900GeVデータのまとめ

- √s=900GeV p-p衝突におけるγ線解析
- エネルギースペクトルのデータとMCを比較
 - EPOS 1.99 と SIBYLL 2.1 の形状は比較的一致
 - 他のモデルは高エネルギー(>300GeV)で明らかに超 過
- ・900GeVと7TeVの比較
 - X_F分布の形状のエネルギー依存性は小さい
 - ファインマン・スケーリングを示唆

$\pi^0 P_T$ spectra at $\sqrt{s}=7$ TeV

Comparison of $\pi^0 P_T$ spectra with models

Ratio of combined P_T spectra to the models

$\pi^0 P_T$ 分布 at $\sqrt{s}=7$ TeV

- π^0 生成 for y > 8.9 at $\sqrt{s}=7$ TeV を解析
- π⁰の P_T分布
 Arm1とArm2で一致
- ハドロン相互作用モデルとデータの比較
 - DPMJET 3.04, EPOS 1.99, and PYTHIA 8.145 と一致
 (9.0 < y < 9.6 and P_T < 0.2GeV)
 - QGSJETII-03 は 8.9 <y< 9.4で合わないが, >9.4では合う
 - EPOS 1.99 が y > 9.4 も含めてもっともよく合っている
 - P_Tの平均値は EPOS 1.99 が最もよく合う

まとめ

- LHCf 実験は, 空気シャワーシミュレーションに用いられるハドロン相 互作用モデルの検証を目的として, LHC加速器最前方散乱中性粒子 (γ, n,π⁰)を測定
- 2010年に√s=900GeVと7TeV陽子-陽子衝突の測定,2011年以降は その結果の解析を行い、√s=7TeV陽子-陽子衝突でのガンマ線エネル ギースペクトルの結果をpublish、さらに900GeVデータの解析やπ^o解 析の結果をpublish
- 系統誤差の改善のためにビームテストデータの解析を進めている
- 2013年のp-Pb衝突のためのArm2検出器準備。
- 2015年に√s=14TeV 陽子-陽子衝突での測定を予定。これに向けて放射線耐性の高いGSOシンチレータを用いた検出器にアップグレード中。
 基礎特性試験は完了し、実機製作を進めている
- 共同利用
 - 今後も計算機使用と観測グループ,モデル開発者との検討会を継続

