I06 南極隕石・宇宙塵の化学的研究

(福岡孝昭1・田澤雄二1・斎藤裕子2・三澤啓司3・箕輪はるか4・横山立憲3・岡野修5) 物品費 260,000円(使途:イメージングプレート、フィルター(含保存ケース)、 ガラス器具、薬品等)

旅費 50,000円

I07 南極隕石・宇宙塵の²⁶AI放射能の測定

(福岡孝昭¹・小島秀康³・大橋英雄⁶・松崎浩之⁷・楠野葉瑠香¹・稲垣ひかる¹) 旅費 50,000円

¹ 立正大·地球, ² 青山学院大, ³ 国立極地研, ⁴ 東慈医大, ⁵ 岡山大, ⁶ 海洋大, ⁷ 東大院·工

惑星物質のカリウムに富む岩片の同定

- 角礫岩コンドライトYamato-74442 (LL4), Bhola (LL3-6), Kraehenberg (LL5)からアルカリ元素に富む岩片がみつかる
- Yamato-74442に含まれるアルカリ元素に富む岩片のサイズ は数mm以下であり、肉眼および実体顕微鏡下で識別することが困難
- 同位体年代学研究(Rb-Sr, K-Ca同位体系)をおこなう上で、 非破壊かつ汚染のない分離が必要であった
- Yamato-74442に含まれる暗色岩片を27試料ハンドピックし、 イメージングプレート(IP)を用いて同定を試みた

- イメージングプレート(IP)(Fujifilm, model BAS III2040)
 を用いてアルカリに富む岩片を同定(カリウム、ルビジウムの放射能を検出)
- 背景放射によるIPの感光を防ぐため、試料はアクリ ル製ホルダーに固定し、曝写は東京大学宇宙線研 究所の低バックグラウンド室内にある、高純度Ge半 導体ガンマ検出器の余剰スペースに設置(50日間) LN₂による窒素ガスのパージングでRnが無い
- レーザースキャナー(GE Healthcare, model Tyhoon FLA 7000@慈恵会医科大学)で潜像を解析
- 検量線法により、カリウムを(半)定量

□□ 試料;ポリエチレン小袋(2重)に封入

Y-74442,121

Y-74442,130

KCI std.

薄片試料

KCl std.

- ルビジウム標準試料の感光は認められず、感光 はカリウムの放射壊変によるものである
 → ルビジウムはIPの感光に寄与しない?
- 感光の認められない試料は、感光のあった試料 (8試料)に比べ小さいが、実体顕微鏡下の観察 では組織が似ている
 - → 感光に必要な放射能を下回っていた? 曝写期間が短い?

- IPを用いることで、アルカリに富む岩片の非破壊 かつ汚染のない同定が可能である
- ・
 か射線の自己吸収のため、3次元試料の定量性 は充分でない
- 曝写期間と、IPの感光に必要なカリウム存在度の検証から、曝写期間は3週間から1ヶ月程度が望ましく、感光に必要なカリウム存在度は60 µg 程度である

深度	年代(year)
177	5,000
340	11,000
450	16,000
520	21,000
700	34,000
900	49,000
1,100	66,000
1,300	86,000
1,500	105,000
1,700	127,000
2,000	173,000
2,300	249,000
2,600	405,000
2,900	670,000

南極ドームFuji切削氷の 深度ごとの年代

過去に扱った試料
現在扱っている試料

107 南極隕石・宇宙塵の²⁶AI放射能の測定

切削氷に混入していた地球物質

・ステンレス製の球粒 ・亜鉛メッキ片 ・ガラス玉 (ロックウール)

I07 南極隕石・宇宙塵の²⁶AI放射能の測定

The accretion rate of micrometeorites to the Earth

F

Locality	Age ^{*7}	Method of measurement	Sampling cross section ^{*8}	Sample weight	Size *9	Accretion rate		
	(kyr ago)		(cm^2)	(kg)	(µm)	$(\times 10^3 \rm{tyr}^{-1})$		
DF0m snow ^{*1}	present	Ir	2000	100	>2.0	1.3	±	0.10
DF177m ice shards* ¹	5	Ir	110	20	>0.2	8.6	±	0.18
DF1700m ice shards ^{*1}	120	Ir	110	40	~ 8.0>0.2	0.32	±	0.09
Greenland GISP2 ice core * ²	6–11	Ir	3.8	1.4	~ 20 >0.45	0.22	±	0.11
Vostok ice core* ³	3.8, 75, 97	³ He	4	1	~ 20 >0.45	0.21	±	0.08
Greenland GISP2 ice core * ³	0.42-0.45	³ He	100	1	~ 20 >0.45	0.17	±	0.08
Yamato Mts., blue ice* ⁴	10-70	separation ²⁰ Ne	10000	1110	40-238	5.3	±	3.1
South Pole water well * ⁵	0.5-1	separation	217000	-	50-700	1.6	±	0.3
Greenland ice * ⁶	0-2	separation	-	>1000	> 50	4.1		

*1:This work, *2: Karner et al.⁷, *3: Brook et al.⁹, *4: Yada et al.¹¹, *5: Taylor et al.³, *6: Maurette et al. ⁴, *7: Estimated age of accretion of MMs, *8: Estimated cross section where MMs accreted, *9: Size range correspond to pore size of filters.

南極宇宙塵の 26 Al γ 線スペクトル

