Ashra

<u>共同利用査定経費:</u>

東京大学宇宙線研究所·助教	浅岡 陽一	Ashra観測のための撮像パイプラインの試験と設置	新規	466	583	1,049	0	100	100	可	F31とまとめて執行。海外旅費は認められません。
東邦大学理学部·教授	小川 了	Ashra観測のための光ファイバー束を用いたトリ ガー統合試験	継続	520	408	928	0	100	100	可	F31とまとめて執行。
茨城大学工学部・准教授	木村 孝之	Ashra観測のための宇宙線撮像センサーの試験	継続	758	110	868	150	50	200	可	F31とまとめて執行。
東京大学宇宙線研究所·准教授	佐々木 真人	全天監視高精度宇宙線望遠鏡Ashra観測	継続	2,076	940	3,016	500	70	570	可	F28-F30とまとめて執行(研究費650、旅費320)。海外旅費 は認められません。

<u>H24年度使途内訳:</u>

研究費 観測データ用HDD、観測用輸送費、作業着、輸送費など 旅費 国内出張 (ICRRでの試験、会議のため)

有効に使わせて頂いております。ありがとうございます。

Ashra計画 10周年

着実な開発と観測の実績

Ashra 提案 ver.1 (2002.08.15)

光電撮像パイプライン&光電レンズ撮像管設置@Mauna Loa

201 ノナル 电レノス 撤 1家 首 (PLI) Y.Asaoka, M.Sasaki NIM, A647:34-38, 2011

Ashraの歴史 2003 予算化 2006 マウナロア山サイトの土 地利用許可 2007 集中インストレーション 2008 トリガーパイロット観測 2011 土地利用許可の10年間 の延長 ・2種類の集光器
ー天頂方向(天頂角 = 30°)
ー水平方向(天頂角 = 75°)
・同一方向を向く複数台の集光器
で1検出器を構成
・主ステーション

12検出器で全天77%カバー

2011 GRB起源PeV-EeVnt初探査論文

何とか物理が出せるところまで漕ぎ着けました。更に精進いたします。 共同研究者とご指導下さった皆様のおかげです。有難うございました。

Ashra計画 現状

トリガー読み出し系の更新 最高感度のPeV-EeVタウニュートリノ初探査

多粒子天文を実現 閃光探査+タウニュートリノ探査 直接チェレンコフ光による1次宇宙線同定、 PeVガンマ線、PeV宇宙線スペクトル、恒星間流星探査、…

Total Resolution: ~3 arcmin image in 42deg. FOV

Can Cover Mauna Kea Surface at 35km Distant

Can Cover Mauna Kea Surface at 35km Distant

観測01&02

Ashra Observation

	Obs01	Obs02	Total
Period	080628-	091007-	798
	090605	110104	days
Obs. Time	1551 hr	2212 hr	3763 hr
Good Weather	90.6%	97.3%	94.4%
Efficiency	99.1%	99.7%	99.5%
Duty Factor	18.8%	20.3%	19.6%

One of Best Sites for Astronomy

v_τ探査のコミッショニング (197hr) 及び宇宙線観測 (44hr) を含む

Obs03 観測まとめ

	シーズン	最大観測可能 時間(時間)	好天観測可能 時間 (時間)	観測時間 (時間)	好天率 (%)	観測効率 (%)
タウニュートリノ観測	39 (11月)	147.5	143.3	143.2	97.1%	99.9%
Duty: 18.2%	38 (10月)	143.7	142.8	138.5	99.4%	97.0%
	37 (9月)	135.2	133.2	130.2	97.1%	97.7%
	36 (8月)	133.1	131.0	130.5	98.5%	99.6%
	35 (7月)	130.9	130.2	127.1	99.5%	97.6%
	34 (6月)	128.7	128.6	128.3	99.9%	99.7%
	33 (5月)	136.1	131.4	126.0	96.5%	95.9%
	32 (3月)	133.2	124.1	123.8	93.1%	99.7%
	31 (2月)	157.5	153.5	89.3	97.4%	58.2%
	30 (1月)	159.3	158.7	155.1	99.6%	97.8%
	合計	1405.2	1376.7	1291.8	98.0%	93.8%
光学閃光観測	39 (11月)	147.5	146.6	144.4	99.4%	98.5%
Duty: 18 5%	38 (10月)	143.7	142.5	140.6	99.2%	98.7%
Duty. 10.5%	37 (9月)	135.2	132.7	131.4	98.1%	99.0%
	36 (8月)	133.1	130.6	130.6	98.1%	100.0%
	35 (7月)	130.9	130.9	128.4	100.0%	98.1%
	34 (6月)	128.7	128.7	128.7	100.0%	100.0%
	33 (5月)	136.1	131.5	127.9	96.6%	97.2%
	32 (3月)	133.2	125.2	125.2	94.0%	100.0%
	31 (2月)	157.5	153.5	96.0	97.4%	62.5%
	30 (1目)	159.3	158.9	158.8	99.7%	100.0%
	合計	1405.2	1381.0	1311.9	98.3%	95.0%

Cherenkov τ shower earth-skimming method for PeV–EeV v_{τ} observation with Ashra

Yoichi Asaoka, Makoto Sasaki

Astroparticle Physics 41 (2013) 7–16

地球かすりτシャワー撮像法

Ashra NTA BG Condition

Dist. Ang. w.r.t. Mountain Edge	Expected BG Contamination
0.1 deg	0.08 /yr
0.3 deg	0.55 /yr
1.0 deg	4.3 /yr
3.0 deg	39 /yr

Enjoy BG Free! with High Precision Directional Measurement by Ashra NTA

IceCube BG Condition (Reduction)

Basic component

The nucleus shadowing effect is considered:

 $a(A, x, Q^{2}) = \frac{F_{2}^{A}(x, Q^{2})}{AF_{2}^{N}(x, Q^{2})}$

Brodsky & Lu, 1990; Mueller & Qiu 1986; E665 Collab. Adams *et al.*, 1992 Summarizing all these:

Tau / Mu Propagation in Rock

Radiation term is suppressed due to mass $M\tau$ / $M\mu$ ~17.

Photonuclear effect dominates above 1PeV.

Tau Propagation Length in Rock

MC Average of Appeared Taus on the Earth

Tau Propagation Deflection in Rock

Possible Deflection << 1 arcmin

τ Shower Can Remember the Original v Direction Very Well

準水平大気チェレンコフ光の検出可能領域

水平シャワーからのチェレンコフ 光は広範囲(~5km)で検出可能

検出器側の到来方向決定精度

方向決定精度評価 (Maximum Likelihood法)

 $(n_x, n_y) = (0.0, 0.0) \text{[deg]};$ (X', Y') = (0.6, 0.0) [deg];E = 10 [PeV].

⇒ シャワー軸の方向 ⇒ 高度25kmとシャワー軸の交点を見込む方向 ⇒ シャワーエネルギー

補正関数と到来方向決定精度

- 有限領域でのLikelihood計算 (夜光を考慮した解析)
- 再構成されたパラメータの中心 ずれを補正する関数が必要
- 補正関数 == 観測量の関数 (N_{pe}, <Length_{cut}>) ⇔ (E, Rp) 観測量 物理量

解像度のR_p, Energy依存性

- Rp依存性 @ N_{pe}=500
- Energy 依存性 @ R_p=540m
- ⇒ 高解像度・高統計精細画像の意義を確認

△ln(E) あたり2.3事象の検出が期待される流量

Comlement IceCube:

- Methodology
- Energy
- Self-trigger for Tau Neutrino

IceCube, Nature 484 (2012) 351]
 IC40+IC59 stacked 117+181GRBs
 Very strong bias for time window (28s) around Satellite Triggers to suppress huge BG

2. [Hummer et al. PRL 108 (2012) 231101]
• Recalicurated neutrino flux =>

Ashra Energy Region more important

3. [Murase et al. ApJ 651 (2006) L5]
Nearby Low luminosity (LL) GRB (ex. GRB 060218/SN 2006aj) dominate total neutrino fluxes at Earth

• X or γ Satellites cannot detect

Direct Cherenkov Method (Kieda et al., Astropart.Phys. 15 (2001) 287)

Cherenkov photon : = $2\pi\alpha (1-1/n^2\beta^2) (1/\lambda_1-1/\lambda_2) \times \mathbb{Z}^2$

DC Detection => Z of Each Primary

Shower : Emission Angle >0.4° DC: 0.15° => 0.3° as n ($\propto \rho_{air}$) changes

Arcmin Resolution Can Discriminate!

Image of Air Cherenkov Light

DC+EAS Simulation with H.E.S.S. and Ashra

H.E.S.S.: E=50TeV, R_{core}=107m

Resolution = $0.16^{\circ}/PMT$

Ashra: E=100TeV, R_{core}=180m

Resolution = 0.05°/ Bin (Real Pix Resolution = 0.02°/Pix)

H.E.S.S. Results

Ashra NTA will

- Extent Fe Flux Measurement to PeV region
- Measure Anisotropy for Each Component

Ashra NTA 🔨

着実なタウニュートリノ初検出に向けて

Full-Scale Ashra = Ashra NTA

レイアウト概念案 <u>中央サイト</u>(Site-0) <u>周辺サイト</u>(Site-1,2,3) 1辺25kmの正三角形頂点

⇒巨大標的(100-1000km³-weq) 巨大空気(面積1000km²上空) BG遮蔽(3山の谷間)

空気を横と下から睨む複眼望遠鏡 3山に囲まれた好天候の空気中の チェレンコフ光&蛍光の両方で 出現タウを漏らさず撮像

NTA Light Collector (NTA-LC) mount baseline design (tentative)

約1年間の設計レビュー後、 Ashra-1(日米)、NuTel(台 湾)、新提案から最良な部分 設計を決定 ⇒ 設計提案 書

設計を決定 ⇒ 設計扱

<u>Light Collector (LC)</u> 瞳径1.5mのシュミット型 視野28度 = 焦点面50cm径

Detector Unit (DU) 同視野を睨む4個のLC 重ね合わせ ⇒ 有効瞳径=3m

⇒ NTA集光器 概念設計案~Ashra-1の1.5倍スケールアップ+同じ読み出し

Summary

<u>Ashra-1 = 新開発&原理実証器</u> 光学系と電子回路系の混合の妙でコスト効率アップ

着実な開発と観測の実績

トリガーシステムのハードほぼ完成。 部分露光制御・精細撮像センサー(FST)試験最終化。

ESタウシャワー撮像法の初の実用化 ⇒ NTAの原理実証

マルチトリガー機能を生かして多彩な物理を遂行中 #共同研究者を募集しています。ご連絡ください。

<u>次世代ニュートリノ望遠鏡 Ashra NTA</u>

600Mpc以内にGRB相当の加速源があれば、明確な発見同定が狙える広 域高感度の監視性能 ⇒ 開拓的な天文物理を行える

#共同研究者を募集しています。ご連絡ください。