

ICECUBE実験による 超高エネルギーニュートリノ探査解析 における系統誤差の研究

石原安野(Aya Ishihara) aya@hepburn.s.chiba-u.ac.jp Chiba University

Aya Ishihara 宇宙線研究所共同利用研究

The Largest Neutrino Detector in the world: The IceCube Detector

Waveforms from the IceCube optical sensors: From spe to 10000 pe

25 cm PMT

- Digitize at 300 MHz for 400 ns with custom chip
- **40 MHz for 6.4 μs with fast** 12/20/2012

WHY ULTRA-HIGH ENERGY NEUTRINOS? PeV AND ABOVE

- Cosmic frontier -PeV gamma-ray horizon limited to a few tens of kpc (our galaxy radius)
- Cosmogenic GZK neutrino production is a 'guaranteed' v source
- Energies above dominant atmospheric neutrinos

ULTRA-HIGH ENERGY SIGNAL EVENTS

from MC simulation

Not flavor sensitive except some special cases, however, we distinguish muon/tau tracks induced by nu mu, nutau CC and cascades induced by nu e CC and NC by 3 flavors of neutrinos 12/20/2012 Aya Ishihara 宇宙線研究所共同利用研究

SIGNAL AND BACKGROUND EVENTS

Burn sample

 $NPE \sim 1 \times 10^{5}$

12/20/2012

Neutrinos in a wide energy range

Data Distributions

Effective livetime of 670.1days

2010-2011 - 79 strings config. **May/31/2010-May/12/2011** Effective livetime 319.9days 2011-2012 – 86 strings config **May/13/2011-May14/2012** Effective livetime 350.1 days 9 strings(2006)22 strings(2007)40 strings(2008)59 strings(2009)79 strings(2010)86 strings(2011)

NPE and cos theta distributions comparisons with 2011 test sample

Analysis Level NPE vs ZA

FINAL LEVEL EVENT RATES

	Total background (IC79+ IC86)		IceCube 2010-2012 per 615.9days	
Atmospheric µ	0.038	GZK neutrino models	All	Contribu tion
Atmospheric	0.023			PeV
Conventional		GZK (Yoshida m=4)	2.0	1.9
PC total	0.060	GZK (Ahlers max)	3.0	2.9
bg lolai	0.000	GZK (Ahlers best fit)	1.5	1.4
prompt v	0.13 1	GZK (Kotera, dip		
BG total with	0.191	FRII)	4.2	2.7
prompt		GZK (Kotera, dip SFR1)	0.9	0.6

SYSTEMATIC ERRORS ON SIGNAL AND BG

Signal

Sources	Errors on signal rate $(\%)$			
Statistical error	± 0.6			
NPE (ice model, absolute sensitivity) $+3.1, -7.4$				
Neutrino cross section	± 9.0			
Photo-nuclear interaction	+10.0			
LPM effect	± 1.0			
Total	$\pm 0.6(\text{stat}) + 13.8 - 11.7(\text{sys})$			

Background

Sources	Errors on conv. bg rate $(\%)$			
Statistical error	± 6.0			
NPE (ice model, absolute sensitivity) $+60.8, -56.1$				
CR composition	-50.0			
Hadronic interaction model	+11.1			
CR flux variation	+21.8, -33.2			
ν yield from CR nucleon	± 5.5			
Total	$\pm 6.0(\text{stat}) + 65.8 - 82.3(\text{sys})$			

Aya Ishihara 宇宙線研究所共同利用研究

COSMIC-RAY COMPOSITION AND HADRONIC INTERACTION MODEL DEPENDENCE

2 events / 615.9 days background (atm. μ + conventional atm. ν) expectation 0.060 events

Preliminary

p-value 1.8×10^{-3} (2.9σ excess beyond conventional atmospheric neutrinos) (2.2σ excess beyond bg with default prompt atmospheric neutrinos)

Vertex positions and the final NPE dist.

EVENT RECONSTRUCTION

PDF of the deposited energy

The "top-down" approach : Inject MC electrons with the event-relevant phase space and reconstruct them by the same method

究

Differential Upper limits (Systematics included)

12/20/2012

Aya Ishihara 于由禄研先所共问利用研

Model検定例 Event rates(>100 PeV) and p-values

V Model	GZK Y&T m=4,zmax=4	GZK Sigl m=5, zmax=3	GZK Ahler Fermi Best	GZK Ahler Fermi Max	GZK Kotera _{FR-II}	GZK Kotera SFR/GRB	Topdown GUT
Rate >100PeV	2.6	4.0	2.0	4.1	3.8	0.6	5.0
Model Rejection Factor	0.98	0.65	1.27	0.64	0.69	3.6	0.53
p-value	9.6x10 ⁻²	2.4x10 ⁻² ពំពោរពិភេន	1.6x10 ⁻¹	2.3x10 ⁻²	3.1x10 ⁻²	6.7x10 ⁻¹	<10 ⁻²

$$N_{100(1-\alpha)\%} = \sum_{n=0}^{2} P_n N_{n,(100-\alpha)\%}$$

 $\begin{array}{c} P_n \\ \alpha \end{array} \text{ probability of } n \text{ events above 100 PeV} \\ \alpha \end{array} \\ \textbf{p-value} \end{array}$

Aya Ishihara 宇宙線研究所共同利用研

Summary

- Searched for neutrinos with PeV and greater energies in nearly full 2 years of the IceCube data
- IceCube is the largest neutrino detector and rejection of the atmospheric neutrinos was achieved by setting energy threshold
- Two candidate events observed
 - PeV to 10PeV energy cascade-channel neutrino events (CC/NC interactions within the detector)
 - <u>The highest energy neutrino events</u> observed ever!
- Performed systematic studies, paper drafts under collaboration review
- Very likely beyond the conventional atmospheric neutrinos
- Unlikely GZK neutrinos (energies too low)
- The strongest constraints on the GZK neutrino models to date