

T2K実験

• v_e appearance search – Phys. Rev. Lett. 107, 041801 (2011) • v_u disappearance measurement – Preliminary result

中山 祥英

東京大学宇宙線研究所 神岡宇宙素粒子研究施設

2011年12月17日 平成23年度宇宙線研究所 共同利用研究成果発表会

平成23年度共同利用研究採択課題

- o 「東海to神岡長基線ニュートリノ実験T2K」
 - 代表者:小林隆
 - 査定額: 10万円(旅費)
- o 「加速器データを用いたv相互作用シミュレーションの研究」
 - 代表者: 早戸 良成
 - 査定額: 5万円(旅費)
- o 「T2K実験における v_e 出現事象探索のための研究」
 - 代表者: 中山 祥英
 - 査定額: なし

T2K (Tokai-to-Kamioka) experiment

Primary goals :

***** Discovery of v_e appearance by $\theta_{13} \neq 0$

Measure non-zero θ_{13} (sensitivity >10 times better than CHOOZ limit)

Precision measurement of ν_μ disappearance $\delta(\Delta m^2_{23}) \sim 1 \times 10^{-4} \text{ eV}^2$, $\delta(\sin^2 2\theta_{23}) \sim 0.01$

Off-axis v beam

- Intense narrow-band @ osc. max. (~0.6GeV)
- Reduce high energy tail which creates BG

On-axis detector (INGRID)

- direct v beam day-by-day monitoring (direction, intensity and profile)
- 16 cubic modules. Sandwich of iron plates and scintillator planes

Off-axis detector (ND280)

- measure v flux/spectrum before oscillations
- 2 Fine Grained Detectors (FGDs)
- 3 Time Projection Chambers (TPCs) PID by dE/dx in gas
- POD (π^0 detector), ECAL, SMRD

NIM A 659 (2011) 106-135, arXiv:1106.1238

Far detector : Super-Kamiokande

Observed SK event timing (relative to beam arrival time)

- Water Cherenkov detector, 22.5kton fiducial mass
- Excellent μ /e PID using ring-shape & opening angle (mis-ID probability ~1%)
- 0 T2K: Realtime recording of all PMT hits within $\pm 500 \mu$ sec of beam arrival time by using GPS

Beam data used in present analyses

Oscillation analysis

Super-K Measurements :

- v_e appearance
 - \rightarrow counting analysis
- ν_µ disappearance
 → rate & spectrum shape

ND280 Measurements :

- Inclusive v_{μ} CC measurement
- v_e measurement as cross-check

 $\mathbf{D}\mu$, Data

 $\mathbf{p}^{\mu,MC}$

exp

SK

Observation/Expectation comparison to extract oscillation parameters

ND280 / Super-K MC simulations

Neutrino Flux :

Detailed MC simulation of beamline with input from proton beam monitors & external hadron data

Neutrino Interaction :

Model (NEUT) tuned/constrained with external data

 \rightarrow Detector simulations

Normalize SK MC prediction

by ND ν_{μ} CC rate

Neutrino flux prediction

T2K beam simulation based on hadron production measurements

- NA61/SHINE (@CERN) measured hadron production in (p, θ) using 30GeV protons and graphite target
- π outside NA61 acceptance and K
 production modeled with FLUKA

Error source (ν_e analysis)	$R_{ND}^{\mu, MC}$	N_{SK}^{MC}	$\frac{N^{MC}_{SK}}{R^{\mu,\ MC}_{ND}}$
Pion production	5.7%	6.2%	2.5%
Kaon production	10.0%	11.1%	7.6%
Nucleon production	5.9%	6.6%	1.4%
Production x-section	7.7%	6.9%	0.7%
Proton beam position/profile	2.2%	0.0%	2.2%
Beam direction measurement	2.7%	2.0%	0.7%
Target alignment	0.3%	0.0%	0.2%
Horn alignment	0.6%	0.5%	0.1%
Horn abs. current	0.5%	0.7%	0.3%
Total	15.4%	16.1%	8.5%

Partial error cancellation after ND correction

ND280 measurements

Q

Data consistent with MC based on NA61 data and ${f v}$ interaction simulation

ν_{e} appearance analysis

T2K $\nu_{\rm e}$ event selection

Number of remaining events after each cut

0

0

300

1000

Reconstructed v energy (MeV)

2000

0

0

100

Invariant mass (MeV/c²)

200

- Beam timing, FC, fiducial (88)
- Single-ring electron-like (8)
- Visible energy > 100MeV (7)
- No delayed electron signal (6)
- Invariant mass < 105MeV/c² (6)
- Rec. v energy < 1250MeV (6)</p>

→ 6 events observed

Expected number of v_e events (θ_{13} =0)

Expected number of events for $\theta_{13}=0$: 1.5 ± 0.3 (sys.) events

ν_{e} appearance search result with 1.43x10²⁰ p.o.t. data

Prob. of observing ≥ 6 events if $\theta_{13}=0 \rightarrow 0.7\%$ (2.5 σ)

For sin² $2\theta_{23}$ =1 and Δm_{23}^2 =2.4x10⁻³ eV²

Normal hierarchy, δ =0 : sin² 2 θ_{13} = 0.11 (best fit), 0.03-0.28 (90% C.L.) Inverted hierarchy, δ =0 : sin² 2 θ_{13} = 0.14 (best fit), 0.04-0.34 (90% C.L.)

Published in Phys. Rev. Lett. 107, 041801 (2011)

Preliminary !

ν_{μ} disappearance analysis

T2K ν_{μ} event selection

Select v_u CCQE enriched sample

- Beam timing, fully-contained, fiducial
- Single-ring muon-like
- Rec. μ momentum > 200MeV/c
- # of delayed electrons ≤ 1

\rightarrow 31 events observed

Composition of the final sample

Source	w/ osc.	w/o osc.
ν_{μ} CCQE	61%	82%
ν_{μ} CC non-QE	32%	17%
v_e CC	0.05%	0.01%
NC	6%	2%

$$v_{\mu}$$
 analysis result $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2(2\theta_{23})\sin^2(\frac{1.27\Delta m_{23}^2 L(km)}{E_v(GeV)})$

Method A : Un-binned maximum likelihood with systematic error parameter fitting Method B : χ^2 for binned spectrum without systematic parameter fitting

An oscillatory pattern is clearly seen !

Conclusions

- v_e appearance / v_{μ} disappearance results from the first offaxis long-baseline v experiment using 1.43x10²⁰ p.o.t. data
- Indication of v_e appearance via non-zero θ_{13}
 - 6 candidate events observed, while 1.5±0.3 expected if θ_{13} =0
 - \rightarrow probability = 0.7 % (2.5 σ significance)
- O First v_u disappearance result from T2K
 - 31 events observed, while 104 expected in case of null-oscillation
 - 90% C.L. allowed region consistent with SK/MINOS

T2K next steps

• Need more data (only 2% of the planned final exposure)

- to establish v_e appearance, to measure osc. parameters precisely
- will resume physics data taking in January 2012
- → 0.5 MW x 10⁷ s (1x10²¹ p.o.t.) by Summer 2013 Conclude $\theta_{13} \neq 0$ (>5 σ if the present T2K best-fit is the answer)
- o Analysis improvements
 - reduce flux prediction uncertainties using new NA61 data
 - reduce SK systematics for sub-dominant events
 - v_{e} appearance analysis using energy spectrum
 - more detailed ND data analyses (v_{μ} CCQE/CCnQE , v_{e} , ...)
 - reduce cross section uncertainties using T2K ND data