Knee領域および最高エネルギー領域での 宇宙線反応の実験的研究 (LHCf 実験)

增田公明(名大STE研) LHCf collaboration

東大宇宙線研 福島正己 他

2011年12月17日 平成23年度 宇宙線研究所 共同利用研究成果発表会

共同利用研究課題

- LHC加速器の 900GeV ~ 14 TeV (ビーム当 たり 450 GeV ~ 7 TeV) 陽子 - 陽子衝突によっ て生成される最前方中性粒子を測定し,宇宙線 反応に寄与するハドロン相互作用モデルの検証 を行う(LHCf 実験)。
- モデルの違いによる10¹⁷~10²⁰eVの宇宙線観測
 データの解釈に関してTAグループ等と検討及び
 議論を行う。

平成23年度共同利用予算

- 平成22年度共同利用予算繰越分
 - - 東日本大震災のため, H23年3月に予定していたmeetingを中止, 予算をH23年度へ繰り越した
- 查定額 旅費 200千円 + 200千円 (名古屋 柏)
 - ミニ研究会(H23.10)の旅費に使用
 - 宇宙線研でTAグループ等と種々の議論を行う
 - 1-3月の LHCf-TA joint meeting(仮) 及びミニ研究会で使用予定
- 共同利用計算機の使用
 - MCシミュレーション
 - データ解析

- mini workshop: UHECR and hadron interaction in the LHC era -

日時:2011年10月12日(水)11:00-15:00 場所:東大宇宙線研究所 6階大会議室

- 11:00-11:40 Recent results and plan from Telescope Array by D. Ikeda
- 11:40-12:10 Recent results and plan from LHCf by H. Menjo
- 13:30-13:45 Observations of the muon bundles with IceCube by A. Ishihara
- 13:45-14:45 Hadronic Interactions & Air Showers by S.Ostapchenko
- 14:45-15:15 CGC and CR by K. Itakura
- 15:30-17:00 ICRR seminar by Sergey Ostapchenko

-Interaction models: ultrahigh energy cosmic rays and LHC data-

名大STE研

村木綏^{*}, 伊藤好孝, <u>増田公明</u>, 松原豊, 塔隆志^{**}, 三塚岳, 間瀬剛, 滝和也, 川出健太郎, 鈴木健太, 深津幸平, 磯利弘

名大KMI 毛受弘彰 神奈川大学工 田村忠久

早稲田大学理工総研

鳥居祥二,笠原克昌,鈴木拓也

芝浦エ大システムエ 吉田健二

JAXA 清水雄輝

* spokesperson, ** technical coordinator

LHCf collaboration

LHCf Japan

Italy

(Univ. di Firenze)

O. Adriani, L. Bonechi, M. Bongi, G.Castellini,R. D'Alessandro, M. Grandi, P. Papini, S. Ricciarini(Univ. di Catania) K. Noda, A. Tricomi

Spain

(Centro Mixto CSIC-UVEG, Valencia) D.A. Faus, J. Velasco

France (Ecole-Polytechnique, Paris) M. Haguenauer

USA (UC Berkeley) W.C. Turner

Switzerland (CERN) A.-L. Perrot

Physics Motivation

LHCf 実験の概要

- 加速器実験でハドロン相互作用モデルを検証する
- CERNの最高エネルギー加速器 LHC(Large Hadron Collider)で,450GeV×450GeV ~
 7TeV×7TeV陽子 陽子衝突実験を行い,最前方放出中性粒子を測定する
- 実験室系 4×10¹⁴eV~1×10¹⁷eVの宇宙線反応と
 等価
- その結果から10¹⁷eVまでのハドロン相互作用モデ ルを検証し,さらにこれより高い超高エネルギー宇 宙線観測データの正しい解釈を行う

The LHCf experiment

The LHCf detectors

Sampling and Positioning Calorimeters

- W (44 r.l , 1.7 $_{\rm I}$) and Plastic Scintillator x 16 Layers
- 4 positioning layers XY-SciFi(Arm1) and XY-Silicon strip(Arm#2)
- Each detector has two calorimeter towers, which allow to reconstruct π^0

Performance

Energy resolution (> 100GeV) < 5% for photons 30% for neutrons Position resolution < 200µm (Arm#1) 40µm (Arm#2)

Front Counter

- Thin scintillators with 80x80mm²
- To monitor beam condition.
- For background rejection of beam-residual gas collisions by coincidence analysis

LHCf 準備経過

2004年 5月 Letter of Intent 2004年 7月 プロトタイプ検出器テスト(SPS/CERN) 2005年10月 Technical Report 2006年 2月 Technical Design Report 2006年 6月 実験承認(LHC Committee) 2006年 8月 Arm#1 検出器較正(SPS) 2007年 8月 Arm#1/#2 検出器較正(SPS) 2008年 1月 Arm#1/#2 検出器 最終インストール

LHCf 実験のスケジュール

2007年	 CERN,SPS加速器でのビームテスト
2008年	・ LHCビームラインに検出器設置
2009年、 12月	 √s=900GeV陽子-陽子衝突の測定 28時間、約6,600 shower eventの取得@Luminosity ~10²⁶cm⁻²s⁻¹
2010年 7月 10月	 √s=7TeV陽子-陽子衝突の測定 150時間、約4x10⁸ shower events, 10⁶ π⁰ events √s=900GeV陽子-陽子衝突の測定 15時間、約10⁵ shower eventsの取得@Luminosity ~10²⁷cm⁻²s⁻¹ Phase- I 測定完了。ビームラインより検出器撤去。 CERN, SPS加速器でのビームテスト
2011年	 Phase-Iのデータ解析 論文「√s=7TeV陽子-陽子衝突でのガンマ線エネルギースペクトル」 Phase-II測定に向けての検出器アップグレード準備
2012年	(LHC:陽子一鉛衝突測定) (RHIC:√s=500GeV陽子一陽子測定) ^{引在計画中}
2014年	Phase II √s=14TeV陽子−陽子衝突での測定

Event sample of 2 measured by Arm2

Particle Identification

データ解析の現状(1)

- <u>First physics results has been published.</u>
 "Measurement of zero degree single photon energy spectra for s=7 TeV proton–proton collisions at LHC"
 O. Adriani, et al., PLB, Vol.703, p.128-134 (09/2011)
- データセット: 2010年5月15日、3.5時間 Arm1:0.68nb⁻¹, Arm2:0.53nb⁻¹
- Luminosity ~ 6x10²⁸cm⁻²s⁻¹
- 解析条件
 - PID Efficiency & Purity 補正
 - 多重入射イベントカット
 - Pseudo-rapidity 選別 >10.94 and 8.81< <8.9
 - 2つの検出器の結果を合成
 非弾性衝突数で規格化

断面積 $\sigma_{\text{inela}} = 71.5 \text{mb } を仮定$ (c.f. 73.5 ± 0.6^{+1.8}/_{-1.3} mb by TOTEM)

最前方ガンマ線スペクトル Arm1とArm2の比較

Arm1とArm2は系統誤差内で一致

最前方ガンマ線スペクトル@ S=7TeV p-p

Data Error bars : Statistical errors, Gray hatch: Systematic errors DPMJET 3.04 QGSJET II-03 SIBYLL 2.1 EPOS 1.99 PYTHIA 8.145

最前方ガンマ線スペクトルの比較

実験データとシミュレーションの比較より、どのモ デルも完全にはデータを再現出来ていない

- 一方,実験データの感度は系統誤差により制限 されているため,系統誤差を抑える事が今後の 課題

定量的な議論にはさらに詳細な解析が必要

データ解析の現状(2)-進行中-

- s=7TeV**陽子 陽子衝突データ解析**
 - 中性メソン解析
 - ガンマ線の詳細解析
 - P_T分布
 - ハドロン解析
 - ATLASとの共同解析

CERN SPS ビームテストの解析 エネルギースケールの再チェック ハドロンシャワーの検出器性能評価

s=900GeV陽子 - 陽子衝突データ解析 ✓ ガンマ線エネルギースペクトル ✓ ハドロンエネルギースペクトル

検出器アップグレード

s =14TeV p-p衝突測定では検出器に高い放射線耐性が必要
 2010年 s =7TeV測定 10倍 s =14TeV測定
 被曝線量 約200Gy 被曝線量(予想)約2000Gy

検出器の基本構成はほぼそのままで,放射線耐性の高いものに入れ替える

	EJ-260	GSO
放射線耐性(Gy)	100	10 ⁶
密度(g/cm ³)	1.02	6.71
放射長(cm)	14.2	1.38
発光減衰時間(ns)	9.6	30-60
発光強度 (NaI=100)	19.6	20

検出器アップグレード(現状)

- 基礎特性試験は完了
 - GSOシンチレータの放射線耐性評価@HIMAC
 - GSO bar クロストーク評価@HIMAC
 - GSOシンチレータ集光効率の位置依存 電子ビーム@早大 鷲尾研, 重イオン@HIMAC
 LHCf 検出器に使用するための必要条件を 満たすことを確認
- 現状
 - GSOシンチレータ, GSO barはすべて購入済み

- カロリーメータに組み込むためのホルダーの製作完了
- 今後の予定
 - 2012年5月 重イオンビーム@HIMACを用いて、
 各パーツごとのキャリブレーション試験
 - 2012年7月 Arm1アップグレード検出器の組み上げ
 - CERN SPSでのビームテストによる性能評価試験
 - 2013年 Arm2検出器のアップグレード

Information

- ・ テクニカルペーパー
 - GSOシンチレータの放射線耐性測定(K.Kawade, et al.), published in JINST "Study of Radiation Hardness of Gd₂SiO₅ scintillator for Heavy Ion Beam"
 - ビームテストによる検出器性能評価(T.Mase, et al.), in preparation
 - FCによるLuminosity測定(K.Taki, et al.) in preparation
- LHCf**実験の結果から**Air Shower Simulationへのインパクトの研究を開始
 - COSMOSを用いて、二次粒子スペクトルを人工的に変化させて Xmax の変化 を見る
- ハドロン相互作用モデル開発者や原子核理論物理学者との議論
 - Segey Ostapchenko 氏(QGSJET開発者)を交えてミニ研究会を開催
 - Tanguy Pierog 氏(ハドロン相互作用モデルEPOS開発者)を2週間程度
 招聘予定

まとめ

- LHCf実験は,空気シャワーシミュレーションに用いられるハドロン相 互作用モデルの検証を目的として,LHC加速器最前方散乱中性粒子 (,n, ⁰)を測定している。
- 2010年に s=900GeV, 7TeV陽子-陽子衝突の測定を行い, 2011年はこの結果を解析して、 s=7TeV陽子-陽子衝突でのガンマ線エネルギースペクトルの結果を PLB に発表した。
- さらに、 ⁰解析や 900GeVデータの解析を行うと共に,系統誤差の改 善のためにビームテストデータの解析を進めている。
- 2014年に s=14TeV 陽子-陽子衝突での測定を予定しており,これに 向けて放射線耐性の高いGSOシンチレータを用いた検出器にアップ グレードを行う予定。基礎特性試験は完了し,実機製作のための準備 を進めている。

