チベット高原での 高エネルギー宇宙線の研究 川田和正 東京大学宇宙線研究所 平成23年度共同利用成果発表会 @宇宙線研究所 2011.12.17 (For the Tibet ASyCollaboration)

本日の内容

- 共同利用研究課題の内訳と経費の用途
- チベット実験について
- 水チェレンコフ型ミューオン検出器の建設の現状
- 今年度のデータ解析のトピック(太陽の影)

平成23年度チベット実験関係 共同利用研究採択課題一覧

- 1. チベット高原での高エネルギー宇宙線の研究 (瀧田正人 東京大学宇宙線研究所)
- 2. Knee領域一次宇宙線組成の研究 (柴田槇雄 横浜国立大学大学院工学研究院)
- 3. 銀河拡散ガンマ線の研究 (日比野欣也 神奈川大学工学部)
- 4. 宇宙線による太陽の影を用いた太陽周辺磁場の時間変動の研究 (西澤正己 国立情報学研究所人間・社会情報研究系)
- 5. チベット空気シャワーアレイによる10TeV宇宙線強度の恒星時日周変動の観測 (宗像一起 信州大学理学部)

チベットグループ共同利用研究 経費執行状況

研究費: 申請額 600万円 → 配分額 200万円

2002年に完成したTibet-IIIの維持・運転及び 水チェレンコフ型地下ミューオン観測装置の建設 に必要な経費の一部に使用。

旅費: 申請額 1273.8万円 → 配分額 415万円

宇宙線研での研究打ち合わせや中国出張海外旅費 に使用。

ご支援、どうもありがとうございます!

The Tibet ASy Collaboration

Papers (in refereed journals):

- Cosmic-ray energy spectrum around the knee obtained by the Tibet experiment and future prospects Advances in Space Research, 47, 629-639 (2011)
- Cosmic-ray energy spectrum around the knee observed with the Tibet air-shower experiment Astrophysics and Space Sciences Transactions, 7, 15-20 (2011)
- Observation of the Fermi pulsar catalog at TeV energies with the Tibet air shower experiment Astrophysics and Space Sciences Transactions, 7, 211-215(2011)

1. 32nd ICRC (Beijing, China, August 2011), 16 presentations

2. 14th Workshop on Elastic and Diffractive Scattering(Qui Nhon, Vietnam, December 2011), 1 presentation

研究目的

☆ 大気チェレンコフ望遠鏡と相補的な広視野(約2sr)連続観 測高エネルギー宇宙線望遠鏡

- ✓ 3~100 TeVの高エネルギーガンマ線放射天体の探索、 10¹⁴ ~10¹⁷ eV の宇宙線の観測から、宇宙線の起源、加 速機構の研究を行う
- ✓ 太陽活動期における"太陽の影"(太陽による宇宙線の 遮蔽効果)を観測し、太陽近傍および惑星間磁場の大局 的構造を知る。

The Tibet AS_Y Collaboration

M.Amenomori(1), X.J.Bi(2), D.Chen(3), W.Y.Chen(2), S.W.Cui(4), Danzengluobu(5), L.K.Ding(2), X.H.Ding(5), C.F.Feng(6), Zhaoyang Feng(2), Z.Y.Feng(7), Q.B.Gou(2), H.W.Guo(5), Y.Q.Guo(2), H.H.He(2), Z.T.He(4,2), K.Hibino(8), N.Hotta(9), Haibing Hu(5), H.B.Hu(2), J.Huang(2), W.J.Li(2,7), H.Y.Jia(7), L.Jiang(2), F.Kajino(10), K.Kasahara(11), Y.Katayose(12), C.Kato(13), K.Kawata(3), Labaciren(5), G.M.Le(2), A.F.Li(14,6,2), C.Liu(2), J.S.Liu(2), H.Lu(2), X.R.Meng(5), K.Mizutani(11,15), K.Munakata(13), H.Nanjo(1), M.Nishizawa(16), M.Ohnishi(3), I.Ohta(17), S.Ozawa(11), X.L.Qian(6,2), X.B.Qu(2), T.Saito(18), T.Y.Saito(19), M.Sakata(10), K.Sako(12), J.Shao(2,6), M.Shibata(12), A.Shiomi(20), T.Shirai(8), H.Sugimoto(21), M.Takita(3), Y.H.Tan(2), N.Tateyama(8), S.Torii(11), H.Tsuchiya(22), S.Udo(8), H.Wang(2), H.R.Wu(2), L.Xue(6), Y.Yamamoto(10), Z.Yang(2), S.Yasue(23), A.F.Yuan(5), T.Yuda(3), L.M.Zhai(2), H.M.Zhang(2), J.L.Zhang(2), X.Y.Zhang(6), Y.Zhang(2), Yi Zhang(2), Ying Zhang(2), Zhaxisangzhu(5), X.X.Zhou(7)

(1)Department of Physics, Hirosaki University, Japan
(2)Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, China
(3)Institute for Cosmic Ray Research, University of Tokyo, Japan
(4)Department of Physics, Hebei Normal University, China
(5)Department of Mathematics and Physics, Tibet University, China
(6)Department of Physics, Shandong University, China
(7)Institute of Modern Physics, SouthWest Jiaotong University, China
(8)Faculty of Engineering, Kanagawa University, Japan
(9)Faculty of Education, Utsunomiya University, Japan
(10)Department of Physics, Konan University, Japan
(11)Research Institute for Science and Engineering, Waseda
University, Japan (12)Faculty of Engineering, Yokohama National University, Japan
(13)Department of Physics, Shinshu University, Japan
(14)School of Information Science and Engineering, Shandong Agriculture University, China
(15)Saitama University, Japan
(16)National Institute of Informatics, Japan
(17)Sakushin Gakuin University, Japan
(18)Tokyo Metropolitan College of Industrial Technology, Japan
(19)Max-Planck-Institut f¥"ur Physik, Deutschland
(20)College of Industrial Technology, Nihon University, Japan
(21)Shonan Institute of Technology, Japan
(22)RIKEN, Japan
(23)School of General Education, Shinshu University, Japan

Yangbajing Cosmic Ray Observatory

中国西蔵自治区羊八井 90°522**E**, 30°102**N**, 4,300 m a.s.l. (606g/cm²) ⁹

Tibet Muon Detector(MD) Array

※ 7.2m x 7.2m x 1.5m depth Water cell
 ※ 20" ΦPMT x 2 (HAMAMATSU R3600)
 ※ 地下 2.5m (~515g/cm²~19r.l.)
 ※ 材質: コンクリート(表面:白色防水材)

full MD:192セル(12プール)

ASアレイ + MD

Total ~10,000 m²

原子核起源空気シャワーを99.9%以上除去(>~20TeV)

ガンマ線起源の空気シャワーにはミューオンが少ないことを利用

2011 Tibet Muon Detector (MD)

水チェレンコフ型ミューオン検出器の建設の現状

2010年 11/29 コンクリート打設終了

No.4プール

No.3プール

2011年 建設状況

土盛量の測定

ケーブルドレインのブロック

埋戻し作業

ファンの取付

支持金具の取り付け

PMT取り付け完了(1)

天井への取り付け

PMT取り付け完了(2)

- ・残りのMD内部作業(PMTインストール等)
 の完了と注水
- ・近々(半年後程度をめどに)観測開始予定

「太陽の影」による太陽磁場構造の研究

10TeV 太陽の影の観測

太陽の視位置を中心とした 4°×4°の宇宙線強度マップ

装置の角度分解能(~0.9°) のために実際の太陽の 視半径(~0.26°)より広がる

宇宙線の平均頻度に 対して~6%の宇宙線遮蔽 が見られる。

位置、遮蔽量を観測 太陽磁場をどれだけ 知ることが可能か?

「太陽の影」のMCシミュレーション

Including the Solar Wind Properties

Data - MC χ^2 /dof = 68.7/14 (5.7 σ)

Potential Field Source Surface (PFSS) Model

Altschuler and Newkirk, Solar Physics, 9, 131 (1969) Hakamada, Solar Physics, 159, 89 (1995)

Current-free

Plasma velocity is small ($\beta/c \ll 1$) $\rightarrow \frac{\partial E}{\partial t} \ll j$ Local and short-lived electric currents are ignored $\rightarrow j = 0$

Maxwell equations

$$\nabla \times \mathbf{B} = 0 \quad \Rightarrow \quad \mathbf{B} = -\nabla \Psi$$
$$\nabla \cdot \mathbf{B} = 0$$

Scalar potential Ψ has to satisfy the Laplace equation

$$\nabla^2 \Psi = 0$$

Scalar potential Ψ can be expanded to spherical harmonic series

Spherical Harmonic Series

 $\Psi(r, \theta, \phi) = r_{\odot} \sum_{n} \sum_{n} P_{n}^{m}(\theta) \times$ $+ \left\{ d_n^m \left(\frac{r}{r_{\odot}}\right)^n + (1 - d_n^m) \left(\frac{r_{\odot}}{r}\right)^{n+1} \right\} h_n^m \sin m\phi \right] ,$ **Boundary condition at Rss** $\Psi(R_{ss},\theta,\phi)=0$ olars. $\rightarrow B_r \neq 0, B_{\theta} = 0, B_{\phi} = 0$ Source Surface (Rss), Solar surface magnetograph

This map is also expanded to Spherical harmonic series

Solar surface magnetograph with the Kitt Peak Vacuum Telescope utilizing the Zeeman effect (FeI 868.8, 630.1 and 630.2nm)

Spherical Harmonic Series

Magnetic Field Lines by PFSS Model

Courtesy: K. Hakamada

White light image

This photograph of a total solar eclipse was taken by Miloslav Druckmüller and colleagues from Brno University of Technology, Czech Republic, during an eclipse on July 22, 2009.

Current Sheet Source Surface (CSSS) Model

Xuepu Zhao & Todd Hoeksema, JGR, 100, 19 (1995)

Abstract:

The model includes the effects of the large-scale horizontal electric currents flowing in the inner corona of the warped heliospheric current sheet in the upper corona, and of volume currents flowing in the region where the solar wind plasma totally controls the magnetic field. The model matches the MHD **solution** for a simple dipole test case better than earlier source surface and current sheet models

磁気静水圧平衡 Bogdan & Low, ApJ, 306, 271 (1986) Magnetostatic force balance Current (J) $\frac{1}{4\pi}$ (∇×B)×B−∇p− $\rho \frac{GM}{r^2}$ $\hat{\mathbf{r}} = 0$

Magnetic force, gas pressure and gravity

Analytical solutions

$$\mathbf{J} = \frac{1}{\mu_0 r} [1 - \eta(r)] \left[\frac{1}{\sin \theta} \frac{\partial^2 \Psi}{\partial \phi \partial r} \hat{\theta} - \frac{\partial^2 \Psi}{\partial \phi \partial r} \hat{\phi} \right]$$

$$\mathbf{B} = -\eta(r)\frac{\partial\Psi}{\partial r}\hat{r} - \frac{1}{r}\frac{\partial\Psi}{\partial\theta}\hat{\theta} - \frac{1}{r\sin\theta}\frac{\partial\Psi}{\partial\phi}\hat{\phi}$$

$$\eta(r) = \left(1 + \frac{a}{r}\right)^2$$

a : length scale of horizontal electric currents in the corona

Xuepu Zhao & Todd Hoeksema, JGR, 100, 19 (1995)

Comparison between CSSS and PFSS

まとめ

1996年~から2009年に至る
 第23太陽活動周期の「太陽の影」の連続観測に成功

→ 11年周期の太陽活動周期変動

- 複数の磁場モデルを取り入れた「太陽の影」の 数値シミュレーションを開発中
 - → 太陽の影はコロナ磁場構造に感度あり
 → コロナ大気中の電流を取り入れたCSSS磁場モデルが 実験データを依り良く再現