

Ken Sakashita(KEK) for T2K collaboration Dec/17/2010, 平成22年度共同利用研究成果発表会

- 1. Introduction of T2K experiment
 - Motivation, Features and Sensitivity
- 2. Status
 - T2K physics data taking on-going
- 3. Future prospects and Summary

Motivation

• $v_{\mu} \rightarrow v_{e}$ 振動の発見 → a finite θ_{13}

 θ_{13} が有限であれば 将来の実験でCPVの測定が可能 CP odd term in P($v_{\mu} \rightarrow v_{e}$) $\propto sin\theta_{12}sin\theta_{13}sin\theta_{23}sin\delta$

→ レプトンセクターでのCP violationの発見へ

Motivation

• $v_{\mu} \rightarrow v_{e}$ 振動の発見 \longrightarrow a finite θ_{13} T2K: v_{e} appearance θ_{13} が有限であれば将来の実験でCPVの測定が可能 CP odd term in P($v_{\mu} \rightarrow v_{e}$) \propto sin θ_{12} sin θ_{23} sin θ_{23} sin δ

→ レプトンセクターでのCP violationの発見へ

Tokai-to-Kamioka(T2K) 長基線ニュートリノ振動実験 **T2** J-PARC Main Ring Super-Kamiokande (ICRR, Univ. Tokyo)

(design intensity 750kW)

国際コラボレーション(~500 members, 61 institutes, 12 countries) 新しいニュートリノ施設@J-PARC:建設 in 2004-2008, コミッショニング in 2009 今年から物理データの収集を開始

CP odd term in $\nu \rightarrow \nu$ **prob.** $\propto \sin \delta \cdot s_{12} \cdot s_{22} \cdot s_{13}$

Features of T2K experiment

Super-Kamiokande(SK) as main neutrino detector

- 50kton water cherenkov detector (22.5kton fiducial volume)
- good PID (e/ μ) at sub-GeV, $\delta E_{scale} \sim 2\%$
- **M** High intense neutrino beam
 - conventional beam with ~MW accelerator
 - pure v_{μ} beam from π/K decays (small v_e contamination ~1%)

 \checkmark Narrow energy band v_{μ} beam \rightarrow Off-axis method

☑ Neutrino energy reconstruction

- CCQE interactions dominate at T2K beam energy

Off-axis beam : intense & narrow-band beam

the beam energy depends on the off-axis angle (beam direction)

set off-axis angle to 2.5°

→ beam energy at oscillation max.

(current Δm^2_{23} & L=295km)

- ~1.2k CC int./year for SK
- small high E_v tail (narrow-band)
 - → small # of bkg. for CCQE

Important to keep the beam direction stable (monitoring & controlling the beam)

Experimental setup

ビームの方向のモニター

- ミューオンモニター (spill by spill)
- on-axis near detector "INGRID" (day by day)

uncertainty of beam direction should by < I mrad

- ビームのabs. flux, spectrum, v_e/v_µの測定、 v相互作用の測定
 - off-axis near detector (ND280)

J-PARC Neutrino beam facility

(大改造なく) 2MWまでのビーム運転可能 ← 世界最大の施設

sensitivity @ 8 x 10²¹ protons(30GeV) on target

Status of data taking

2009年4月~12月まで断続的にビームコミッショニング
 → ビームの理解、検出器の立ち上げ
 2010年1月から物理データ収集を開始

First T2K beam event at SK

@2010/Feb./24 6:00
 GPSを用いた
 beam spill timingで
 トリガー

event (showering) (showering) (non-showering)

iant mass : 133 MeV/c² entum : 148 MeV/c

Beam performance

1st run (Jan. to Jun.) : ~50kW operation, 3.23 x 10^{19} protons for physics analysis 2nd run started from Nov. : increase beam power up to 115kW

Stable beam operation

Stability of proton beam position on the target (Jan-Jun)

15r

on-axis前置検出器(INGRID)の測定

off-axis前置検出器

T2K beam events @ Super-Kamiokande

T2K beam eventsは GPSを用いたイベント時間でセレクト

TZR Joserved T2K beam events @SK

single-ring µ-like event

multi-ring µ-like event

Jan-June 2010	# of events
Fully-Contained (FC)	33
+ fiducial volume cut+ visible E > 30 MeV (FCFV)	23

Super-Kamiokande event selection

SK analysis is well established

* >20years experiences w/ Water Cherenkov detector

Even & cut value are fixed already Inbiased selection

For ν_{μ} disappearance analysis	For ν_e appearance search	
Timing coincidence w/ beam timing (+TOF)		
Fully contained (No OD activity)		
Vertex in fiducial volume (Vertex >2m from wall)		
Evis > 30MeV	Evis > 100MeV	
# of ring =1		
μ-like ring	e-like ring	
	No decay electron	
	Inv. mass w/ forced-found 2 nd ring < 105MeV	
	$E_v^{rec} < 1250 MeV$	

2010前半データの物理解析が進行中

analysis strategy

target/

Decay volume

Near Detector

V.. //

Far Detector (Super-K)

analysis strategy

精度を上げるためには

analysis strategy

O(1) near-to-far extrapolation (beam MCOprediction) Hadron production測定 (2) neutrino interaction cross section $R_{F/N} \times R_{F/N} \times R_{F/N}$ $\epsilon^{
m SK}$ とれまでの実験結果 Far Detector Near target/ (Super-K) V.. // Detector

Decay volume

Hadron production 測定

CERN NA61実験

 $p + C \rightarrow \pi(or K) + X$

- pilot run in 2007 and high stat. run in 2009
 - 30GeV p + C (thin target $4\%\lambda_I$ and T2K replica target)

preliminary results of π^+ production from thin target (only '07 data, 20% systematic error)

Prospects

まとめ

●T2K長基線ニュートリノ振動実験

- discovery of v_e app. & precise measurement of v_{μ} disapp.

●物理データ収集を開始

- 1st run January June 2010
 - beam power ~50kWで運転。ビーム・検出器ともに安定
 - Observed # of FCFV events : 23
 - **O** Expect first results by winter 2011 conference
- 2nd run Nov. Summer 2011

● 現在のビームパワー 115kW

• Aim for 150kW x 10⁷ sec $\rightarrow sin^2 2\theta_{13} \sim 0.05$ (90% C.L.)

査定金額:8万円(T2KSKシフトの旅費の一部として使用)

backup

Super Kamiokande (far detector)

- 50 kton water Cherenkov detector (fiducial volume: 22.5 kton)
 - good e-like(shower ring) / μ -like separation, $\delta E_{scale} \sim 2\%$
- New electronics & DAQ since summer 2008 & stably running
- realtime transfer of T2K beam spill (GPS) information

→ trigger of T2K event

Proton beam monitor

Muon beam monitor

- measure v beam direction by muon profile every spill
- two independent monitor covering 1.5m x 1.5m area
 - Array of Ionization chamber

to !

v Energy Reconstruction

• v's Energy reconstruction is possible for CC Quasi-Elastic interaction (CCQE: $v_{\mu(e)} + n \rightarrow \mu(e) + p$)

θ_{13} measurement by v_e appearance θ_{13} $P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}$ $+8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}$ CPC $-8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}$ CPV + $4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Phi_{21}$ solar $-8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1-2S_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31}$ matter effect (small in T2K) $L = 295 \text{ km}, \langle E_v \rangle \sim 0.6 \text{GeV}$ $\delta \to -\delta, \ a \to -a \ \text{for} \ P(\bar{\nu_{\mu}} \to \bar{\nu_{e}})$ $rac{aL}{4E} = 7.6 imes 10^{-5} [ext{eV}^2] \left(rac{ ho}{[ext{g/cm}^3]} ight) \left(rac{E}{[ext{GeV}]} ight) rac{L}{4E} \propto L$ $\sin \Phi_{21} \sim 0.05$

- $P(v_{\mu} \rightarrow v_{e}) \rightarrow sin^{2}(2\theta_{13})$: some ambiguity due to unknown params.
- It is possible to measure CPV by comparing ν and $\overline{\nu}$

