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• QCD Strong CP Problem

• Solution of Strong CP Problem

Peccei-Quinn Mechanism

• Axion is a candidate for Dark Matter

1.1 Axion

L = Lθ=0 + θ
g2

32π2
F aµν F̃ a

µνQCD

CPExperiment 

strong CP problemWhy is θ so small?

AXION

U(1) PQ  U(1)    at         
PQ 

Nambu-Goldstone boson 

Fa : PQ scale

Peccei, Quinn (1977)

θ � 10−10
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2.2 Cosmological Evolution of Axion
• PQ scalar

•                       symmetry breaking  of

axion is a phase direction of PQ scalar

           Axionic String

•                      axion acquires mass through QCD instanton effect   

            

            Domain Wall

•                       axion oscillation 

 significant contribution to cosmic density

U(1)PQ

Φa

V (Φa) T � Fa

T = 0

Φa = |Φa|eiθa = |Φa|eia/Fa

ma = 0

T � Fa

H � ma

T ∼ ΛQCD

ma ∼ 10−5eV

�
Fa

1012GeV

�−1

a

V (a)

2π

Fa

0
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3 Axionic String

• Global strings are produced when U(1)      symmetry is 
spontaneously broken

• After production string network obeys scaling solution             
O(1) strings in a horizon volume

• Strings lose their energy by emitting axions 

Energy spectrum of axions?                                  
Controversy

• New Simulation (  Hiramatsu et al 2010 )

PQ 

ρstring = ξ
µ

t2
(µ : string tension)

P (k) ∼
�

khorizon (Devis, Shellard)

1/k (Sikivie)
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Simulation 
Hiramatsu, MK, Sekiguchi, Yamaguchi, Yokoyama (2010)

• Field theoretical simulation

• Pseudo Power Spectrum Estimator 
(PPSE)

•New string identification scheme

• N(grid) = (512)

• At the end of simulation  

(space resolution) = 1.4 (string width)

(simulation box) = 1.6 (horizon)  

3 
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Simulation Hiramatsu, MK, Sekiguchi, Yamaguchi, Yokoyama (2010)

• Scaling solution

•Energy Spectrum

peaked at horizon scale 

exponentially suppressed 
at higher momentum
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Figure 5: Time evolution of the scaling parameter ξ obtained by averaging over 20 re-
alizations. [Note that data points are not homogeneously placed in t, but in
τ ∝

√
t.]

4.2 Net energy spectrum of radiated axions

Figure 6 shows the energy spectra of radiated axions at t1 = 12.25tcrit (left) and t2 = 25tcrit
(right), that are estimated from the 20 realizations used in Section 4.1. The amplitude
of energy spectrum at t1 is about (t1/t2)2 # 0.24 times that at t2. This is because the
energy density of free axions scales as R(t)4, without emission or absorption. We see a
clear exponential behavior at large k after the removal of the contamination from strings.

As we see in Section 4.1, the system of axionic strings are already in the scaling regime.
Most of axions at this epoch are however emitted before the settlement into the regime. In
order to extract the energy spectrum of axions radiated during the scaling regime, we need
to differentiate the energy spectra at different times. We define the differential spectrum
of radiated axion between t1 and t2,

∆Pfree(k; t1, t2) ≡ R(t2)
4Pfree(k, t2) − R(t1)

4Pfree(k, t1). (25)

If there are no emission nor absorption of axions, the energy density of axion scales as
R(t)4. Therefore, ∆Pfree(k, t) is the net energy spectrum of axions radiated from strings.
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Figure 7: Differential energy spectrum of radiated axions between t1 = 12.25tcrit and
t2 = 25tcrit. Errors shown are estimated from the quadrature of those shown in Figure 6.
Green (red) bars correspond to statistical errors alone (statistical and systematic errors).
Note that the scale in y-axis is arbitrary since the scale factor R(tcrit)/R0 is not well-
defined.

just before tw. After tw, axions becomes non-relativistic due to the finite mass. Today,
axions exist as CDM in the Universe.

In Appendix B, we give a detailed derivation of the density parameter of CDM axions
radiated from axionic strings, adopting the axion mass at finite temperature from recent
studies [6, 31]. By substituting Eqs. (24) and (27) obtained from our simulation into Eq.
(50), we obtain

Ωaxionh
2 = 1.66 ± 0.25 γ

(g∗w
70

)−0.31
(

Λ

400MeV

)(
fa

1012GeV

)1.19

, (28)

where γ, g∗w and Λ are the dilution factor, the number of relativistic d.o.f. at tw, and the
scale of the QCD phase transition, respectively (See Appendix B).

Ωaxionh2 should be smaller than the observed ΩCDMh2. Recent cosmological observa-
tions [26] give ΩCDM = 0.11 (assuming flat power-law ΛCDM model). Therefore we can
translate Eq. (28) into constraint on fa. Assuming no entropy dilution (γ = 1), we obtain
fa ≤ 1.3 × 1011 GeV at 2 σ level. By taking account of uncertainties in the QCD phase
transition, a conservative constraint would be

fa ≤ 3 × 1011 GeV. (29)

16

ρstring = ξ
µ

t2

(horizon scale)−1 ∼ 5
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Constraint on PQ scale

• Cosmic density of produced axion 

• Constraint

Ωaxionh
2 = 1.66± 0.25

�
ΛQCD

400MeV

� �
FPQ

1012GeV

�1.19

FPQ ≤ 3× 1011 GeV
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4. Axion Domain Wall

• QCD scale  

U(1)               discrete Z

          Domain Wall Formation

• N > 1

Domain Wall Problem

              Biased Potential

             Domain wall decay

N=3

PQ N 

V (φ) =
λ

4
(|φ|2 − η2)2 +

m2η2

N2
(1− cos Nθ) + δV

δV = −ξη3(φe−iδ + h.c.)

V

a
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2D simulation

8

FIG. 4: The time evolution of the comoving area density of domain walls for various values of ξ with NDW = 2 (left top),
NDW = 3 (right top), and NDW = 4 (bottom). In the case with NDW = 4, we can choose only one parameter for ξ because of
the restriction given by eq. (15).

From eqs. (16) and (17), we get the formula for the decay time of domain walls

τdec ! 8.5 ×
√

m

NDWξη3
, (18)

or in cosmic time,

tdec ! 18 ×
(

m

NDWξη2

)
. (19)

2. Dependence on m

As we mentioned before, we can not make the value of m/η arbitrary small since we invalidate our assumption
about the approximate discrete symmetry. Furthermore, m/η can not be so large because the core size of the string
δs must be smaller than the width of the domain wall δw for the formation of stable networks: δs/δw ! m/(η

√
λ) $ 1

(for the parameters we used in the simulations, m/(η
√

λ) ≈ 0.32). Therefore, the range of m/η which we can choose
in the actual numerical simulation is narrow. That is the reason why we did not measure the decay time of string-wall
networks by varying m.

Figure 6 shows the m/η dependence of the time evolution of the comoving area density of domain walls. Although
the range of m/η is limited, from this figure we can see that the decay time of domain walls (in conformal time) is
proportional to

√
m, as we anticipated in eq. (12). Therefore, we assume that this dependence on m is correct for

other value of m/η, and use the relation (19) for the evaluation of the decay time of domain walls.
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FIG. 1: The distribution of the potential energy (left) and the phase of the PQ field θ (right) with the case NDW = 2 (top),
NDW = 4 (middle), and NDW = 6 (bottom) at the time τ = 56. The size of these figures is set to be a quarter of the size of
the simulation box. In the distribution of the energy density, the white region corresponds to the vacuum (V (φ) ! 0), the blue
region corresponds to the domain wall (V (φ) ! 2m2η2/N2

DW), and the green region corresponds to the string (V (φ) ! λη4/4),
but the core of the string is too thin to see in this figure. We take the range of θ as −π < θ < π in the right panel.

We note that the lift of the degenerate vacua must be sufficiently small since we assume the circumstance in which
the discrete symmetry is held approximately. We can understand this requirement more quantitatively as follows. If
the lift of the degenerate vacua is large, the probability of choosing vacuum at the time of formation of domain walls
is not uniform between different vacua. For example, assume that there are two vacua (NDW = 2), and the energy
density of one vacuum (false vacuum) is greater than that of another vacuum (true vacuum) due to the presence of
the bias term δV . Then, let us denote the probability of having a scalar field fluctuation at the time of the formation
of domain walls end up in true vacuum as pt and in false vacuum pf . The ratio of these two probabilities is given
by [30]

pf

pt
= exp

(
−∆Vbias

∆Vpot

)
≡ exp(−R), (13)

where ∆Vpot # 2m2η2/N2
DW is the hight of the axion potential, and ∆Vbias # 2ξη4 is the difference of the energy
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Constraints

• EDM

• Decay before wall 
domination
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FIG. 7: The contours of the various observational constraints in the parameter space of Fa and ξ. The solid line shows the
bound given by eq. (24) and the dot-dashed line shows the bound given by eq. (26), for a domain wall number NDW = 2
(red), NDW = 4 (green) and NDW = 6 (blue), respectively. The gray region denoted by “too much NEDM” is the parameter
space which induce too much CP violation conflicting with the experiment of the NEDM, and the region denoted by “wall
domination” is the parameter space in which the energy density of domain walls dominates the total energy density of the
universe. These regions are observationally ruled out. The vertical line shows the usual bound for the axion decay constant,
given by eq. (36). The pink region denoted by “supernovae” is ruled out by the observation of the SN1987A [48], and the region
denoted by “CDM” is excluded by the condition that the axion CDM abundance exceeds the CDM abundance observed today.
The thin solid lines represent the parameters in which Tdec = 1MeV and 0.1MeV, where Tdec is the temperature at which the
domain walls decay (we fixed NDW = 6 for the evaluation of Tdec). The dotted lines show the bound given by eq. (34) for
r = 0.1, r = 0.01 and r = 0.001, where we fixed γ = 60, NDW = 6 and ΩMh2 = 0.15. The yellow region might be excluded if r
is grater than 0.1.

g∗ is the number of radiation degrees of freedom at the time t∗, and Ωgw(t∗) = ρgw(t∗)/ρc(t∗). From a dimensional
analysis, we obtain [30] ρgw(t∗) ∼ Gσ2, where σ is given by eq. (6). By using ρc(t∗) = 3/32πGt2∗ and t∗ " tdec, where
tdec is given by eq. (19), we obtain

Ωgw(t0)h2 " 2 × 10−16 × N−6
DW

(
10−58

ξ

)2 (
10
g∗

)1/3 (
1012GeV

Fa

)4

. (39)

The frequency of gravitational waves redshifts as the universe expands. Therefore, the frequency observed today is
estimated as

f(t0) =
(

g0

g∗

)1/3 T0

T∗
f∗, (40)

where f∗ is the frequency of gravitational waves at the time t∗, T0 =2.725K is the temperature of the universe observed
today, T∗ is the temperature at the time t∗, and g0 = 3.36 is the number of radiation degrees of freedom today. The
numerical result obtained in [30] implies that the frequency of gravitational waves ranges from the Hubble radius at
the time t∗ (f∗ ∼ H∗) to the inverse of the wall width (f∗ ∼ δ−1

w " m). The frequency corresponding to the Hubble
radius becomes

fh(t0) " 3 × 10−9 × N3/2
DW

(
ξ

10−58

)1/2 (
10
g∗

)1/12 (
Fa

1012GeV

)3/2

Hz, (41)

θ̄ � ξη2

m2
� 10−11

ξ > 3× 103N−3

�
m

Mp

�2
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