共同利用運営委員会 19 December 2009

<u>大型低温重力波望遠鏡(LCGT)</u> の開発・設計(XI)

LCGT Collaboration 宇宙線研究所 黒田和明

NASA PHOTO

K Kuroda¹, I Nakatani¹, M Ohashi¹, S Miyoki¹, T Uchiyama¹, O Miyakawa¹, H Ishiduka¹, K Agatsuma¹, T Saito¹, M-K Fujimoto², S Kawamura², R Takahashi², D Tatsumi², A Ueda², M Fukushima², H Ishizaki², Y Torii², S Sakata², A Nishizawa², K Kotake², Y Sekiguchi², A Yamamoto³, Y Saito³, T Haruyama³, T Suzuki³, N Kimura³, T Tomaru³, K Ioka³, K Tsubono^{4,5}, Y Aso⁴, K Ishidoshiro⁴, K Takahashi⁴, W Kokuyama⁴, K Okada⁴, S Kawara⁴, N Matsumoto⁴, F Takahashi⁴, A Taruie⁴, J Yokoyama⁵, K Ueda⁶, H Yoneda⁶, K Nakagawa⁶, M Musha⁶, N Mio⁷, S Moriwaki⁷, N Ohmae⁷, T Mori⁷, A Ogikubo⁷, Y Tokuda⁷, A Araya⁸, A Takamori⁸, K Izumi⁹, N Kanda¹⁰, K Nakao¹⁰, S Sato¹¹, S Telada¹², T Takatsuji¹², Y Bito¹², S Nagano¹³, H Tagoshi¹⁴, T Nakamura¹⁵, N Seto¹⁵, M Ando¹⁵, M Sasaki¹⁶, M Shibata¹⁶, T Tanaka¹⁶, N Sago¹⁶, E Nishida¹⁷, Y Wakabayashi¹⁷, T Shintomi¹⁸, H Asada¹⁹, Y Itho²⁰, T Futamase²⁰, K Oohara²¹, M Saijo²², T Harada²², S Yamada²³, N Himemoto²⁴, H Takahashi²⁵, Y Kojima²⁶, K Uryu²⁷, K Yamamoto²⁸, F Kawazoe²⁸, A Pai²⁸, K Hayama²⁸, Y Chen²⁹, K Kawabe²⁹, K Arai²⁹, K Somiya²⁹, M E Tobar³⁰, D Blair³⁰, J Li³⁰, C Zhao³⁰, L Wen³⁰, J Warren³¹, H Nakano³², R Stuart³³, S Márka³⁴, K Kokeyama³⁵, Z-H Zhu³⁶, S Dhurandhar³⁷, S Mitra³⁷, H Mukhopadhyay³⁷, V Milyukov³⁸, L Baggio³⁹, Y Zhang⁴⁰, J Cao⁴¹, C-G Huang⁴², W-T Ni⁴³, S-S Pan⁴⁴, S-J Chen⁴⁴, K Numata⁴⁵ ¹Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, JAPAN ²National Astronomical Observatory (NAOJ), Osawa, Mitaka, JAPAN ³High Energy Accelerator Research Organization (KEK), Tsukuba, JAPAN ⁴Department of Physics, University of Tokyo, Tokyo, JAPAN ⁵Research Center for the Early Universe, University of Tokyo, Tokyo, Japan ⁶Institute for Laser Science, University of Electro-Communications, Chofu, JAPAN ⁷Department of Advanced Materials Science, University of Tokyo, Kashiwa, JAPAN ⁸Earthquake Research Institute, University of Tokyo, Tokyo, JAPAN ⁹Department of Astronomy, University of Tokyo, Tokyo, JAPAN ¹⁰Department of Physics, Osaka City University, Osaka, JAPAN ¹¹Faculty of Engineering, Hosei University, Koganei, JAPAN ¹²National Institute of AIST, Tsukuba, JAPAN ¹³National Institute of Information and Communication Technology, JAPAN ¹⁴Department of Earth and Space Science, Osaka University, Osaka, JAPAN ¹⁵Department of Physics, Kyoto University, Kyoto, JAPAN

LCGT共同研究者 (2009年10月時点)

¹⁶Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, JAPAN ¹⁷Graduate School of Humanities and Sciences, Ocahnomizu University, JAPAN ¹⁸Advanced Research Institute for the Sciences and Humanities, Nihon University, Tokvo, JAPAN ¹⁹Department of Advanced Physics, Hirosaki University, Hirosaki, JAPAN ²⁰Astronomical Institute, Tohoku University, Sendai, JAPAN ²¹Department of Physics, Niigata University, Niigata, JAPAN ²²Department of Physics, Rikkyo University, Tokyo, JAPAN ²³Department of Physics, Waseda University, Tokyo, JAPAN ²⁴College of Industrial Technology, Nihon University, Chiba, JAPAN ²⁵School of Engineering, Nagaoka University of Technology, Nagaoka, JAPAN ²⁶Department of Physical Science, Hiroshima University, Hiroshima, JAPAN ²⁷University of the Ryukyu, Okinawa, JAPAN ²⁸Max Planck Institute for Gravitational physics (AEI), Hanover, GERMANY ²⁹California Institute of Technology, Pasadena, CA, USA ³⁰Department of Physics, University of Western Australia, WA, AUSTRALIA ³¹Department of Physics, Louisiana State University, Louisiana, USA ³²Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, New York, USA ³³Department of Physics, Glasgow University, Glasgow, UK ³⁴Columbia Astrophysics Laboratory, Columbia University in the city of New York, USA ³⁵Department of Physics, Birmingham University, Birmingham, UK ³⁶Department of Astronomy, Beijing Normal University, Beijing, CHINA ³⁷Inter University Center for Astronomy & Astrophysics, Pune University, INDIA ³⁸Sternberg State Astronomical Institute of Moscow University, Moscow, RUSSIA ³⁹LATMOS, CNRS, 10-12 Avenue de l'Europe 78140, Velizy, FRANCE ⁴⁰Center for Astrophysics, University of Science and Technology of China, CHINA ⁴¹Tsinghua University, Beijing, CHINA ⁴²Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, CHINA ⁴³Center for Gravitation and Cosmology, Purple Mountain Observatory, Chinese Academy of Sciences, Nanging, CHINA ⁴⁴Center for Measurement Standards, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC

 $^{45}\mathrm{Goddard}$ Space Flight Center, NASA, Greenbelt, MD, USA

LCGTの目的 1)世界に先駆け重力波の発見 2)重力波天文学の創生と展開

3km

SAN

LCGTの重力波源

- 1. Coalescence of neutron star binaries
- 2. Coalescence of black hole binaries
- 3. Core collapse of massive stars
- 4. Rotation of pulsar

Existing neutron star binaries in our Galaxy

- PSR B1913+16
- PSR B1534+12
- PSR J1141-6545
- PSR J0737-3039
- PSR J1906+0746

世界の重力波観測網

DETECTOR STATION

CENTRAL FACILITY

EE EE EE

COMPUTING CENTRE

END STATION

Length ~10 km

by 2nd ET workshop

NICEF Kees Huyser TUNNEL Ø ~5 m

LCGTと他の地上計画のスケジュール

LCGTの目標感度と将来の向上感度

LCGT の感度と重力波源 (1)

frequency [Hz]

LCGT の感度と重力波源 (2)

Strain h

世界の観測網におけるLCGTの役割

1) Long baseline length required to determine positioning of sources (20 ms time flight among North America, Europe and Asia)2) Laser interferometer has angular dependent sensitivity pattern

LCGT increases sky coverage by 60% compared with L/H-L/L-Virgo (50% sensitivity of its peak)

LCGTの設計パラメーター

In order to attain the sensitivity to catch the event at ~185Mpc, we need to reduce shot noise determined by 800kW optical power (400 kW each cavity).

Thermal noise of the mirror, coating of the mirror, and suspension need to be suppressed by cryogenic temperature, **20K**. Mechanical losses of these parts are required to satisfy this thermal noise limit; they are10⁻⁸, 4X10⁻⁴, 10⁻⁸

Final sensitivity is

limited by quantum noises in the observation frequency band, 230Hz. Radiation pressure noise is determined both by the optical power and by mass, 30kg.

真空系の設計(中央真空槽室)

防振装置の設計

A)SAS(GASF 3stage)+cryo-sus: FM1、FM2、EM1、EM2 B)SAS(GASF 2stage)+non-cryo: BS、PRM、SEM、MC2F、MC2E C)STACK+2stages: MC1F、MC1E、MMT、PD

熱リンクつきLCGT-SASの物理モデル

IP: inverted pendulum PM: penultimate mass MB: magnet box TM: test mass RM: recoil mass

TAMAの状況

- Almost all noise sources that limit TAMA sensitivity have been recognized.
- Low frequency region of TAMA sensitivity is limited by up-conversion noise

CLIOの状況

LCGT のdefault 設計は DC readout を用いた広帯域RSE方式

LCGT光学設計の各種様式による感度向上

他のR&D 項目 (TAMAとCLIO以外)

- RSE 制御系 NAOJ
 Broadband RSE control scheme analysis
 Well defined parameters
- ・懸架系ファイバーの開発 KEK
 - Sapphire rod deformation
 - Thermal conductivity measurement
- 高出力レーザー光源

- 東大新領域
- 110W出力を達成(2007年)

LCGT実現に向けた感度向上の様子

LCGT推進組織の充実

LCGT is hosted by ICRR under MOU with NAOJ and KEK. Its organization consists of 87 domestic researchers belonging to 17 universities or research institutes and 28 oversea members belonging to 14 universities or research institutes (115 researchers in total).

研究者コミュニティからの支援

- 1993: Gravitational wave telescope was nominated as one of future projects by the report of subcommittee of ICRR.
- 1994: Early realization of Gravity wave detectors were described in the Astronomical subcommittee of Science Council of Japan.
- 1994: MOU promoting GW research among directors of NAOJ, KEK, and ICRR, being renewed every two years hereafter.
- 2000: Space Science subcommittee of the academic council of MEXT nominated LCGT as one of projects in a fund waiting list with recommending the reinforcement of R&D.
- 2005: Special report of the Astronomical subcommittee of Science Council of Japan strongly requested the prompt funding of LCGT on behalf of the whole astronomical community.
- 2007: ICRR was nominated as the host institute for LCGT under revised MOU originally exchanged in 1994.
- 2007: Future research plan committee of ICRR exclusively pushed LCGT.
- 2008: GWIC under IUPAP PaNAGIC strongly supported the funding of LCGT that made the beginning of observation in 2015 possible.
- 2008: Astronomy & Astrophysics subcommittee of Science Council of Japan raised the resolution to promote early LCGT funding.
- 2009: Combined subcommittee (IAU, Astronomy & Astrophysics) in Science Council of Japan made a resolution to endorse LCGT.

- LCGTの干渉計技術(power recycling, Fabry-Perot Michelson, control system)は、TAMA や CLIO によるR&Dで確立されている。
- もし LCGT が予算化されれば、世界に先駆け重力 波を検出できる。
- 初検出の後には、adv. LIGO、adv. Virgo、GEO
 HF などとともに国際観測網の一翼を担う。
- 重力波検出のための長いR&Dがようやく日の目を 見ようとしている。