スーパーカミオカンデ

石野宏和 岡山大学 2009年12月19日 平成21年度共同利用研究成果発表研究会

目次

- ・ SK IV の現状
- SK | + || + ||のデータ解析結果・現状
 - 大気ニュートリノ
 - 陽子崩壊
 - モノポール探索
 - 太陽ニュートリノ
- SK with Gd (GADZOOKS!)
 - R&Dの現状
 - 新実験室へのバーチャルツアー
- まとめ

査定金額

- A01-A03, A05, A07, A09-A13, A16, A18-21, B01 まとめて執行
 - -研究費: O、旅費 300千円
 - 代表: 中畑雅行 (東大宇宙線研)
 - 使途: 共同利用者の旅費

SKの歴史

11146 ID PMTs (40% coverage) Energy Threshold (total electron energy) 5182 ID PMTs (19% coverage) **7.0 MeV**

11129 ID PMTs (40% coverage)

4.5 MeV work in progress

Electronics Upgrade

< 4.0 MeV target S. Nakayama

SK IV の新電子回路(QBEE)

QBEE の安定性

- 較正パルスによる QBEE のゲインの安定性
 - ペデスタル補正無しでも±0.5%で一定。
- QBEE 自体の安定性
 - SK 内層部検出器読み出し(全472枚)は一年間で故障O。
 - SK 外層部検出器読み出し(全80枚)のうち1枚故障。電源のリサイクル時に。

QBEEは安定に問題なく稼働し、順調にSK IV のデータを収集している。

ミューオン崩壊電子の検出効率改善

SKI+II+IIIのデータ解析結果・現状

大気ニュートリノ振動結果

CPTの破れの探索

ニュートリノと反ニュートリノが別々の振動パラメータを持つと仮定して 大気ニュートリノ事象の天頂角分布をフィット。

R. Wendell and W. Wang

pp→K⁺K⁺の探索

0 candidate events found in the data.

(expected background: 0.3 events)

Boosted Decision Tree を用いた 解析。

 $\mathsf{BR}:{}^{16}\mathsf{O}(\mathsf{pp}) \rightarrow {}^{14}\mathsf{C}\;\mathsf{K}^{\scriptscriptstyle +}\mathsf{K}^{\scriptscriptstyle +}$

これまでの cut base な解析手法の 2倍の改善。

cf. Frejus の結果: τ/BR(pp→π⁺π⁺)>0.7 x 10³⁰年

C. Berger et al., PLB 269, 227 (1991)

陽子崩壊の探索

SK | + || + ||| のデータ(173kton•year) の解析結果

τ/BR(p→e⁺π⁰) > 1.0 x 10³⁴ 年

τ/BR(p→K⁺v) > 3.3 x 10³³ 年

モノポールの探索

- モノポールが太陽の重力
 によってトラップ。
- モノポールがルバコフ効
 果により陽子崩壊を促進。
- π、µ崩壊からニュートリノ が生成される。
 p→(ρ⁰, ω, η, K⁺, ...) + e⁺ (or μ⁺),
 (ρ⁰, ω, η, K⁺, ...)→π⁺
 π⁺→μ⁺ ν_µ
 μ⁺→e⁺ ν_e ν_µ
- 太陽方向からのニュート リノ(18MeV~55MeV) の検出を試みる。

太陽ニュートリノの観測

SKI+II+IIIの太陽ニュートリノ解析はもうすぐ公表。

Gd in SK (GADZOOKS!)

超新星背景ニュートリノ

- 宇宙開闢以降起きた超新星爆発により、
 ニュートリノが宇宙に蓄積。
 - 超新星背景ニュートリノ (Supernova Relic Neutrinos, SRN)
- SKIが世界で最も厳しい制限
 - 1.08 /cm²/s @90%C.L.
 - 理論的予想値の約3倍。

Gd入りSK (GADZOOKS!)

- SKでGdを使って、陽電子と遅延
 ガンマ線によるコインシデンス
 - J.F. Beacom and M.R. Vagins, PRL 93, 171101 (2004).
 - Gdが中性子を吸収すると、3-4 個計8MeVのガンマ線を放出。

- SKでGdを入れることにより、5年間でSRNの理論的予言に到 達可能。
 - スパレーション事象の抑制により、10MeVに閾値を下げることが可能。
 - ・「見えないミューオン」事象を1/5にすることが可能。

Gd 化合物

Gd compound	corrosion	light attenuation
GdCl ₃	Х	0
$Gd(NO_3)_3$	0	Х
$Gd_2(SO_4)_3$	0	0

- 硫酸ガドリニウムが現在考えられている候補。
- SKの構成物質の腐食テストを実施中。
 ステンレス、ガラス、ゴム等。

透過率の測定 @UCI

Gd溶液選択的純化装置 @UCI

$\operatorname{Gd}_2(\operatorname{SO}_4)_3 \xrightarrow{} 2 \operatorname{Gd}^{3+} + 3 \operatorname{(SO}_4)^{2-}$

by M.R. Vagins

Gd水溶液選択的純化装置のプロトタイプがUCIで構築中。
 ナノフィルターで99.99%の効率で硫酸ガドリニウムを除去し、ROからの送水は、0.05ppm以下の濃度。

SKでの中性子検出効率の測定

H. Watanabe et al., Astropart., Phys. 31, 320 (2009)

- Am/Be ソースは 4.43MeV のガンマ線と中性子を放出。
 - 4.43MeVガンマ線は、BGOによって検出。
 - 中性子は、容器の中のGd水溶液で吸収され、エネル ギーが計8MeVガンマ線を放出。
- この容器をSKの中に配置して、SKでデータ収集。

SKでの中性子検出効率の測定

- エネルギー分布はMCと一致。
- 遅延時間分布は、Gd溶液中での中性子の自由行程時間と 一致。
- 中性子タグの効率 66.7%.
 - 偶発バックグランドは、即発事象のエネルギーが10MeV以上で、 2 x10⁻⁴以下。

EGADS

Evaluating Gadolinium's Action on Detector Systems

- 評価用200トンGd溶液チェレンコフ装置
 - 水の透過率、腐食、環境中性子線、純化装置の試験等
- 平成21年度に予算が認められた。
 - 基盤S(代表:中畑雅行)
 - ・ EGADSメインタンク、透過率測定他
 - 補正予算
 - 実験室、純水・純空気ユーティリティ、前段純化タンク

Schedule of GADZOOKS! R&D

Corrosion Tests

まとめ

- SK4は順調に稼働
- SKI+II+IIのデータ解析結果
 - 大気ニュートリノ
 - ・天頂角・L/Eの新しい結果、CPTの破れ探索。
 - 陽子崩壊
 - p→e⁺π⁰崩壊モードで 10³⁴年の下限制限。
 - モノポール探索
 - 世界最高感度。
 - 太陽ニュートリノ
 - ・閾値4.5MeV,解析・較正方法の改善。
- Gd in SKのR&Dが本格化
 EGADSの建設が始まった。

backup slides

θ₂₃はπ/4より大きいか小さいか

E, [GeV]

大気ニュートリノを用いた θ13の測定

