

清水雄輝 東京大学宇宙線研究所 平成21年度共同利用研究成果発表研究会 2009年12月18日

Super-K(神岡)

J-PARC(東海村)

J-PARC – Super-K間の長基線ニュートリノ実験

- v_{μ} disappearance $(v_{\mu} \rightarrow v_{x})$: θ_{23} , Δm_{23}^{2} の精密測定
- v_e appearance $(v_{\mu} \rightarrow v_e)$: non-zero θ_{13} の発見

T2K実験概要

これまでの流れと今後のスケジュール

最初のSKイベント発見を期待

2009年の活動

データ取得方法の研究

- スピルタイミング転送
- イベント分類

ビームラン(2009年4,5,10,11,12月)、 ダミースピル(2009年3月~)により 動作を検証

ニュートリノ振動解析のための準備研究

- 検出器シミュレーションの改良・検証
- v_µ測定によるθ₂₃, Δm₂₃測定の感度評価
- v_e測定のバックグラウンド

T2Kデータの取得方法

- ・ ビームラインからSKにビームタイミング情報を転送し、トリガーとして使用
- ニュートリノ到来予測時間の±500µsの信号を全て取得
- ビームニュートリノイベントはオフライン処理により探索

→トリガーロジックによるバイアスをなくし、様々な条件により解析可能

ビームタイミング転送

T2Kイベントの取得は受信ビームタイミングに依存

- ビームタイミング情報(GPS時間)をリアルタイムに転送(SINET3)
- J-PARCから情報を受信後、受信情報をJ-PARCに返送(round trip test)
- 転送所要時間、データ破損の有無をスピルごとに確認
- ▶ ビームランにおいて全スピル1sec以内
- ダミースピル測定でSK-DAQの速度低下 により1sec以上の遅延が3回発生 (SINETメンテナンス、異常は除く)

イベントの分類

オフライン処理で発見されたビームニュートリノイベント候補を分類

- FCイベントから低エネルギー(E_{vis}<30MeV)やPMT放電イベントを分離
- 外水槽(OD)に信号のあるイベントも最大限に利用

ビームランの結果

- ビームタイミング転送は全スピルで成功
- ・ 期間中SKは安定にデータを取得
- 1ms window内のイベントサーチを実施

	12/12	12/13
期間	0:17-10:06	00:20-07:12
受信スピル数	754	234
スピル受信失敗	0	0
FCイベント(1ms)	0	0
LEイベント(1ms)	24	11
ODイベント(1ms)	5	0

accidental backgroundとconsistentな結果

∆T [µs]

9

T2K実験におけるSK

- 振動後のニュートリノスペクトルを測定
- 1-ringイベントの選択によりE_vを再構成 可能なCCQE反応イベントを選択

検出器シミュレーションの改良・検証

1. 時間分解能の非対称性を導入

 v_{μ} disappearance

イベント数、スペクトルの形状により θ₂₃, Δm₂₃を決定

- 感度に影響の強い系統誤差を調査
- 感度をイベント数、スペクトル形状で 独立に評価
- イベント数の感度への寄与が大きく、
 系統誤差の低減が必要

v_e appearance

- θ₁₃が0でない場合、振動によりv_eが出現
- v_uのNC1π⁰相互作用イベント、ビーム由来v_eが主要なバックグラウンド
- π⁰再構成のための複数の手法、系統誤差評価方法の検討が進行中

750kW × 5year (fiducial volume: 22.5kton)

	$\mathbf{v}_{\mu} + \mathbf{v}_{\mu}$		background v _e		v _µ →v _e	
	CC	NC	CC	NC	CC	$sin^2 2\theta_{13} = 0.1$
cutなし	3538	3644	165	61.6	316	(Chooz limit)
all cut	0.432	9.70	15.4	0.212	143	

13

まとめ

- T2K実験はJ-PARCの大強度陽子ビームによりニュートリノ を生成、世界最高感度でのθ₂₃, Δm₂₃及びθ₁₃測定を目指す
- SKのおけるビームニュートリノ測定のため、ビームタイミング 転送、イベント分類方法を研究、開発
- 2010年以降のビームランによるニュートリノ振動測定のため、
 v_u disappearance, v_e appearance測定の感度評価
- 2009年のビームランによりミューオンモニター、on-axis検出 器にて最初のイベントを観測、SKにおいても測定を実施