

テレスコープアレイ実験

ICRR 櫻井信之 他TA共同研究者

Telescope Array Collaboration

池田大輔,大岡秀行,大西宗博,木次敦子,木戸英治,近藤好,佐川宏行,櫻井信之,芝田達伸, 下平英明,瀧田正人,武多昭道,竹田成宏,得能久生,鳥居禮子,野中敏幸,林田直明,福島正己, 山川敏枝,山川雄一,山本邦之, Fabrice Cohen,吉井尚^A,大嶋晃敏^B,荻尾彰一^B,奥田剛司^B, 川上三郎^B,田中秀樹^B,林嘉夫^B,藤井俊博^B,松山利夫^B,南野真容子^B,宮内仁^B,有働慈治^C, 日比野欣也^C, 千川道幸^D, 鈴木聡^E, 田中真伸^E, 藤井啓文^E, 松田武^E, 山岡広^E, 中村亨^F, 井上直也^G, 川名進吾G, 和田吉満G, 河合秀幸H, 吉田滋H, 千葉順成!, 小林健太朗!, 宮田孝司!, 東龍二J, 垣本史雄J, 多米田裕一郎」、常定芳基」、林健太郎」、福田崇徳」、田中公一^K、内堀幸夫L、門多顕司^M、本田建^N、 石井孝明^N, 冨田孝幸^N, 岩本祥平^N, 露口勇輔^N, 鵜飼久^N, 小澤俊介^O, 笠原克昌^O, 手嶋政廣^P J.H.Kim^Q, S.Roh^Q, D.Ryu^Q, S.Nam^R, I.H.Park^R, J.Yang^R,B.G.Cheon^S, E.J.Cho^S, H.B.Kim^S, J.Kim^S, H.Kang^T, J.H.Lim^T, D.R.Bergman^U, G.Hughes^U, D.Ivanov^U, L.Scott^U, S.Stratton^U, G.B.Thomson^U, T.Abu-Zayyad^V, M.Allen^V, J.W.Belz^V, S.A.Blake^V, O.Brusova^V, R.Cady^V, Z.Cao^V, P.Huentemeyer^V, C.C.H.Jui^V, K.Martens^V, J.N.Matthews^V, D.Rodriguez^V, P.Shah^V, J.D.Smith^V, P.Sokolsky^V, R.W.Springer^V, J.R.Thomas^V, S.B.Thomas^V, L.R.Wiencke^V, I.S.Cho^W, W.R.Cho^W, Y.J.Kwon^W, D.Gorbunov^X, O.Kalashev^X, V.Kuzmin^X, G.Rubstov^X, P.Tinyakov^X, I.Tkachev^X, S.Troitsky^X

東大宇宙線研, 愛媛大理^A, 阪市大理^B, 神奈川大工^C, 近大理工^D, KEK^E, 高知大理^F, 埼玉大理工^G, 千葉大理^H, 東理大理工^I, 東工大理^J, 広島市大^K, 放医研^L, 武蔵工大工^M, 山梨大^N, 早大^O, マックスプランク研^P, 忠南大^Q, 梨花女子大^R, 漢陽大^S, 釜山大^T, ラト ガース大^U, ユタ大^V, 延世大^W, 露科学アカデミーINR研^X

日米独韓露 25研究機関 115名

LIXI

平成∠∽

□ 共同利用研究費

	配分額		
研究課題	研究費	旅費	合計
絶対光量測定による新型大気モニタ装置の開発	500,000	600,000	1,100,000
TA大気蛍光望遠鏡の標準光源YAPの温度特性の 測定	600,000	800,000	1,400,000
宇宙線望遠鏡実験による超高エネルギー宇宙線の 組成研究	200,000	300,000	500,000
小型電子加速器による空気シャワーエネルギーの 絶対較正の研究	200,000	800,000	1,000,000
最高エネルギー宇宙線の電波的観測の研究	0	300,000	300,000
宇宙線望遠鏡による極高エネルギー宇宙線の研究	0	1,500,000	1,500,000

□ TA実験とは(1/2)

- 地表粒子検出器+大気蛍光望遠鏡の複合検出器を用いた 超高エネルギー宇宙線測定実験
 - <u>地表粒子検出器 (SD)</u>: プラスチックシンチレータ検出器
 - 地表における電子成分を主に検出
 - トリガー効率は10<sup>18.5eVで90%以上
 時期に依らずほぼ100%の時間を観測に使える。
 AGASAと同様の対象を異なる検出器で観測できる。
 </sup>
 - <u>大気蛍光望遠鏡 (FD)</u>: <u>独自開発2基+Hires-I移設1基</u>
 - シャワーの電子成分の縦方向発達を観測
 - 二台以上の望遠鏡による同時観測により測定精度を向上する。
 Hires-I検出器との相互較正を直接行える。

□TA観測装置~SD~

mode 2027 totalebo

Plastic scintillator detector 3m² x 1.2 cm x 2 layers Wireless LAN,GPS 12bit 50MSPS FADC

1.2km間隔で設置

·ド郡

scope

SDs

(Google earth)

Ridge FD

•2008年3月~11月:503SDs、 11月以降:507SDs

<u>DAQシステムで実際に測定した</u> 検出器位置 (位置精度=±50cm)

平成20年度 共同利用研究発表会

 11月末より各サブアレイの境界を越える事象についてトリ ガーをかけられるようになった。

11/25~12/16のデータ

□SD1MIPピーク解析(1)

- 全てのPMTで10分毎にモニターしている1MIP分 布から各SDのゲインおよびp.e.数を以下の手順 で求めた。
 - 1. AMSの一次粒子スペクトル+COSMOS+dpmjetで TA高度における e, μ, γ のエネルギー分布を求める。
 - 2. これらの二次粒子をGEANT4で作成した検出器シミュ レーションに入力しシャワー粒子に対する検出エネル ギー分布を求める。
 - 3. 得られたエネルギー分布を用いて1MIP観測データを フィットする。
 - p.e.数、ゲイン、事象数をフリーパラメータとする。
 - その他、検出器の非一様性を7%と見積もった。(サンプル調査の結果)

イベントの比率

Show

ミューオン、チェレンコフ光 飛行機 他(空気シャワー候補)

平成20年度 共同利用研究発表会

08/07

平成20年度 共同利用研究発表会

<u>今後、詳細な解析を行い、PMT・YAPそれぞれの温度依存性を明らかにしていく</u>

制御+モニターPC

ビーム電流は ファラデーカップで測定、 コアモニターでモニター

FDステレオイベント再構成の例

Xmax [g/cm ²]	N _{max}	E ₀ [eV]
736	2.4x10 ⁹	2.9x10 ¹⁸

FD,SD共に較正データのデータベース化はほぼ終了し、 解析に取り込むための準備を行っているところである

19

ロハイブリッドイベント探索

ハイブリッドイベントの探索のための準備研究を開始した。 定義:FD・SDそれぞれのトリガーの時刻差が200us以下

SD May/ 12/ 2008 – Sep/ 5/ 2008 FD June, July, Aug. (45days)

•SD + 1FD

# of event	total	SD東	SD西	SD北
BRM-FD	221	197	17	7
LR-FD	223	22	203	8

•SD + 2FDs

23 events

■UHECRの電波的観測の研究

今回の結果

- 最高エネルギー宇宙線の起 源の詳細探索のための地上 における10⁵km²電波検出器 の研究
 - 安価な電波(送)受信機アレイによる広領域観測装置
 - 24時間稼働
- 3つの観測方法
 - レーダー法
 - 制動放射観測法
 - 地磁気によるシンクロトロン 放射観測法

□TV電波を用いた試験観測(1)

平成20年度 共同利用研究部

□TV電波を用いた試験観測(3)

平成20年度 共同利用研究発表会

- 検出器の大規模設置および調整が終了し、本格観測が スタートした。
- SDは全領域でDAQの境界を越えたトリガーがかけられるようになっている。
- CLFの設置も終了し、自動運用の試験が始まっている。
- LINACの日本での試験が終了しユタへの移送が間近である。
- 各較正データのデータベース化はほぼ終了し、解析への フィードバックの準備を行っている。
- 電波を用いたUHECRの観測の研究も現地でスタートした。

