CANGAROO実験

CANGAROOチーム ICRR、東海、京都、ANU、アデレード、ATNF、 山形、茨城医療、甲南、茨城、広島、名古 屋、北里、山梨学院、警察研、東エ大

平成20年度共同利用費

代表者	校費	旅費	合計
森	400	1,800	2,200
榎本	3,000	400	3,400
谷森	200	500	700
西嶋	200	800	1,000
内藤	200	100	300
河内	200	300	500
櫛田	50	200	250
大石	300	300	600
郡司	50	400	450
吉越	300	0	300
	4,900	4,700	9,600

主な支出済み項目
 望遠鏡作業 500
 ・修理作業一部

- -物品費 2,190
 - 鏡洗浄作業
 - HVボード修理
 - PMT開発
 - 電子部品 etc.
- 海外旅費 2,633
 - オーストラリア観測
- 国内旅費 190
 - ・国内打合せ

単位:千円

MoU's

- フェルミ・カンガルー
 –キャンペーン、ToO
- AGIS-CTA-Japanese_R&D
- CTA-JAPAN_CTA

- FPI
- PHYS

CANGAROO-III現状

- 小型鏡
 - 反射率⇒劣化(~<50%レベル)
 - スポットサイズに問題
 - 落下+表面はげ
- ライトガイド(同様に劣化)
- 電子回路
 - 100nsゲート←HESSの10倍以上
- 集光率 - HESSの1/3
- ハドロンセパレーション
 **/
 **/
 **/
 - 数倍悪い
- 改善の可能性大いにあり

小型反射鏡の開発(森、大石、谷

森)

- 研削による試作
 - 大型研削盤(ナガセインテ グレックス社)
 - 形状精度0.2μm・表面粗さ 10nm以下が可能
 - チェレンコフ望遠鏡用には オーバースペックなので、 研削時間を減らして低コス ト化する必要あり)
 - 金属鏡(あるいは薄硝子 鏡+ハニカムサポート?)
 - 年度内に試作予定
 - ナノオプトニクス社
 - 岡山3.8m望遠鏡用分割鏡 を製作中

従来の研磨方式とは異なり、大量の鏡を短時間で 製作することができます。

従来方式【研磨】 一定の力でこすって鏡を作り ます。

干涉計

研削盤

新方式【研削】 精密に位置制御したやすりで 削り取ります。

nºC-13002

CAMERA R&D (国澤、領木)

- ウルトラ・バイ・アルカリ(メタルチャンネル)
 集光率1.7倍アップ
- スーパー・バイ・アルカリ(ライン、フラットパネル)
- コッククロフト・ウオルトン高圧回路
- ・プリアンプ
- アナログメモリー(水上)
 コスト減
- フォトカップラー

T.Yoshikoshi, "Towards a Network of Atmospheric Cherenkov Detectors VII" (2006)

Model array simulation

100 GeV γ

 $1 \text{ TeV } \gamma$

 ● 4台の望遠鏡を矩形に配置した場合のシミュレーションによる 望遠鏡の口径と間隔に対する有効面積の変化。点線は geometrical areaを示す。"20-ring"は視野6度相当。

22

7

 $10 \, \text{TeV} \gamma$

大型予算要求

- 特別推進
- 新学術領域
- ・その他
 - 2国間
 - ・日本ーオーストラリア(準備中)
 - 日本ードイツ(準備中)
 - 日本-フランス(準備中)

物理成果(前発表以降)

- Publications
 - "Very high energy gamma-ray observations of the Galactic Plane with the CANGAROO-III telescopes", Ohishi, M. *et al.*, Astropart. Phys., 30, 47-53 (2008)
 - "CANGAROO-III Search for Gamma Rays from Kepler's Supernova Remnant", R.Enomoto et al, ApJ, v683, p.383(2008)
 - "Observation of an extended VHE gamma-ray emission from MSH 15-52 with CANGAROO-III", T.Nakamori et al, ApJ, 677, p.297-305(2008)
 - "CANGAROO-III Observations of the 2006 Outburst of PKS2155-304",Y.Sakamoto et al,ApJ, 676, p.113-120(2008)
 - "Observation of Very High Energy gamma rays from HESS J1804?216 with CANGAROO-III Telescopes",Y.Higashi et al, ApJ, 683, p.957-966(2008)
 - Cluster of Galaxy, R.Kiuchi et al., submitted for publication

PKS 2155-304 in 2008(水村, 松澤@東海大)

- 観測:7/24-8/5(18.4 hr), 8/22-9/7(29.3 hr), 9/20-9/28(17.0 hr)
 - live time: 47.4 hr
 - 望遠鏡: T3 & T4 (2-fold)
- 結果
 - 超過事象数: 4±29 events
 - フラックス上限値(2σ) (>660GeV) < 3.5×10⁻¹² [cm⁻² s⁻¹] (<10% Crab))

PKS 2155-304 in 2006(坂本, 西嶋@東海大)

20

-20

53944

Integral flux (>660GeV)[cm⁻²s⁻¹]

- フラックスの時間変動
 - Fractional root mean square variability amplitude
 - $F_{var} = 0.75 \pm 0.07$ (July 28) 0.58 ± 0.08 (July 30)
 - 最も短いdoubling time: 34 min. (1 σ U.L.) ⇒放射領域サイズ: R<5.5×10¹³ δ cm ⇒ブラックホール質量: M<1.9×10⁸ δ M_{solar}
- エネルギースペクトル $\frac{dN}{dE} = (1.0 \pm 0.2_{\text{stat}} \pm 0.5_{\text{syst}}) \times 10^{-11} \left(\frac{\text{E}}{1\text{TeV}}\right)^{-2.5 \pm 0.5_{\text{stat}} \pm 1.1_{\text{syst}}}$
 - EBL上限值: n<45.5 nWm⁻²sr⁻¹ @1.1 µ m
 - δ =60, B=2.5 G, γ_{max} =2.0×10⁴, q_e=300 cm⁻³s⁻¹(SSCモデル)

H 2356-304 in 2005(秋元,山崎@東海大)

- 観測: July 9-16 & Aug.3-12, 2005
 - live time: 26.3 hr
 - 望遠鏡: T3 & T4 (2-fold)
- 結果
 - 超過事象数: 6±23 events
 - フラックス上限値(2σ) (> 690 GeV) < 7.0×10⁻¹² [cm⁻² s⁻¹]

W44 (湯川D論2008年度)

Possible candidate of VHE γ -rays coincident with molecular

- Composite SNR (X-Ray: Thermal / Radio: Non-thermal)
- 2.8 kpc (H_I absorption)
- Age 20000 years (Pulsar)
- EGRET UnID 3EG J1856+0114

red = 8 μ , green = 4.5 μ , blue = 3.6 μ , and magenta = 5.8 μ minus a scaled 8 μ image. (Reach et al.(2006))

- Possibly interacting with Giant Molecular Cloud (GMC)
 - CO emission
 - 1720 MHz OH maser ¹³

W 44 Result

• IC + Relativistic Bremsstrahlung

 Hadron component of EGRET flux < 10%

Wide scan of Vela SNR • Vela SNR ~ 10,000 years old

- - Old but still can accelerate CR.
- d=300pc
 - If Crab @ 300pc \rightarrow 50-Crab!
 - 8-Crab per 1^o_r-circle (r_{SNR}=2.5^o)
- Really no TeV-gamma-ray in this SNR shell?

Copied from HESS homepage

2006スキャン

PSR B1704-44領域(Preliminary)

- 歴史
 - EGRET→dE/dt/d² 最大のガンマ線パルサー
 - C-I ポイント・ソース
 - HESS 完全否定(ON Only:ウォッブル・モード)
 - C-I 再解析
- C-IIIとしての長時間観測(最終結論を出すため)
 - 2004年 1121min
 - 2007年 2187min
 - LONG ON/OFF

なぜHESSでは見えなかったのか?

- HESS観測
 - ONのみ
 - ソースから0.6 度離れたリングをBG
 - Acceptanceを考慮して差し引く

C-IIIで同様に行うと?

最後に

- どうしても現施設を改修する必要がある。
 - 大型予算必要。
- HESSを超える感度を目指す。
 - できる。
 - 将来計画につながる形でこれを行える。
- HESS、MAGIC、VERITASと比べ特色のある観測を行っていきたい。
 たとえば広がったソース。
- TeVガンマ線将来計画はCANGAROOを超えた枠で行う。
 - 広くCRCに、それ以外にも(高エネルギー、原子核)。
 - +理論(戸谷、井上、山崎、、、)
 - 一部すでに始まっている。
 - 春の物理学会シンポジウム
- 概算要求?