

中山 祥英 (東京大学宇宙線研究所)

2008年12月19日 平成20年度共同利用研究成果発表研究会

History of Super-Kamiokande

Electronics Upgrade

新エレクトロニクスシステム開発の動機

□ 今後10年以上の安定したデータ収集

- 従来の研究対象の長期安定観測、T2Kニュートリノの安定測定
- 内水槽検出器と外水槽検出器で統一されたシステム
- 消費電力を低く抑える
- □ 観測領域の拡大、観測性能の向上
 - 高エネルギー(>数GeV)大気ニュートリノ事象の エネルギー分解能向上
 - 太陽ニュートリノ観測のエネルギー閾値を下げる(< 5MeV)
 - 近傍超新星爆発ニュートリノ事象の検出効率向上
 - 反電子ニュートリノ反応からの中性子検出 (超新星背景ニュートリノ等の観測)

New front-end electronics, QBEE

New DAQ readout scheme

No hardware trigger. Instead record all hits and apply software triggers.

Block diagram of the new online DAQ

Achieved by Gigabit Ethernet, 10GbE + Distributed Processing

新エレキシステム導入による検出器性能向上(1)

- バースト事象(24ch hit, 1秒間)に
 対するQBEEのスループットを測定
- □ 130kHz までefficiency が 100%
- 銀河中心の超新星爆発事象の約
 1000倍に相当(現エレクトロニクスの100倍以上の性能)

→ 0.3kpcの距離でもデッドタイムなしで取れるようになる

新エレキシステム導入による検出器性能向上(2)

物質効果により、振動確率が レゾナンス的に大きい部分が 2~10GeVのあたりに現れる

3世代振動解析によるθ₁₃の探索で重要となる、10GeV付近の大気ニュートリノ事象のエネルギー分解能が、大幅に良くなる

エレクトロニクス入れ替え作業(8/25~9/6)

New electronics installation completed !

- 2008年9月6日、Super-Kamiokande IV 開始
- エレクトロニクスの詳細なチェック、オンラインプログラム のコミッショニング、基本的な検出器キャリブレーションを 約2か月かけておこなった
- □ SK-IVの開始以来、順調に観測データを収集している データ解析も始まっている

SK-IV events, startup calibrations, etc.

Cosmic-ray muon

Atmospheric v (e-like)

Atmospheric v (μ -like)

他にも、SN burst試験などがおこなわれている

Solar Neutrinos

SK-I + SK-II : Solar Neutrino Flux

	Livetime (days)	Energy range (MeV)	Number of signal events	Flux (x10 ⁶ cm ⁻² sec ⁻¹)
SK-I	1496	5.0-20.0	$22404 \pm 226 \text{ (stat)} + 784 \text{ (sys)} -717 \text{ (sys)}$	2.35 ± 0.02 (stat) ± 0.08 (sys)
SK-II	791	7.0-20.0	$7212.8^{+152.9}_{-150.9} (\text{stat})^{+483.3}_{-461.6} (\text{sys})$	$2.38 \pm 0.05 \text{ (stat)}^{+0.16}_{-0.15} \text{ (sys)}$

Consistent with expected variations due to eccentricity of Earth's orbit

No correlation with solar cycle minima or maximum seen

Phys. Rev. D78, 032002 (2008)

SK-I + SK-II : Solar Neutrino Flux (cont'd)

Day/Night Asymmetry

$$\mathcal{A} = rac{\Phi_{day} - \Phi_{night}}{rac{1}{2}(\Phi_{day} + \Phi_{night})}$$

SK-I day-night asymmetry: $-0.021 \pm 0.020 \text{ (stat)}^{+0.013}_{-0.012} \text{ (sys)}$

SK-II day-night asymmetry: $-0.063 \pm 0.042 \text{ (stat)} \pm 0.037 \text{ (sys)}$

Consistent with zero

SK-I + SK-II : Energy Spectrum / Oscillation Analysis

SK-III : Background in the central region """

SK-III background rate lower than SK-I in central region (water system improvement)

By a better timing calibration, the low BG region extended from the previous report (8.9kton \rightarrow 13.3kton)

 SK-IIIの最終期間(Livetime:86days)は、trigger thresholdを 下げてデータをとった(4.5 MeVでefficiency 100%)

- 4.5-5.0 MeVは現在解析中
- □ SK-IVでは、まずエネルギー閾値4.0 MeVを目指す

Atmospheric Neutrinos

Simulation/Reconstruction Updates

Re-analysis of SK-I and SK-II data due to many changes/improvements

SK-I + SK-II : Zenith Angle Analysis (2-flavor)

90% confidence level allowed region: $sin^22\theta > 0.95$ $1.7x10^{-3}eV^2 < \Delta m^2 < 2.7x10^{-3}eV^2$

MINOSの結果 2.1x10⁻³ eV² < △m² < 2.7x10⁻³ eV² sin² 2θ > 0.85 (90%C.L.) と相補的(混合角については SK大気vからより強い制限) SK-I + SK-II : L/E analysis

Preliminary

Non-standard neutrino-matter interaction (NSI)

ε′ (NU)

$$H = \frac{1}{2E} U_{\alpha j} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix}_{jk} (U^{\dagger})_{k\beta} + \frac{1}{V_{MSW} + \sqrt{2}G_F N_f} \begin{pmatrix} \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\tau}^* & \epsilon_{\mu\tau}^* \end{pmatrix}}{Matter effect NSI}$$

By a 2-flavor analysis
$$I = Flavor changing neutral current (FCNC)$$
$$I = Lepton non-universality (NU)$$
$$I = V_{MSW} + \sqrt{2}G_F N_f \begin{pmatrix} \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\tau}^* & \epsilon_{\mu\tau}^* \end{pmatrix}}{Matter effect NSI}$$
$$I = Flavor changing neutral current (FCNC)$$
$$I = Lepton non-universality (NU)$$
$$I = V_{MSW} + \sqrt{2}G_F N_f \begin{pmatrix} \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\tau}^* & \epsilon_{\mu\tau}^* \end{pmatrix}}{Matter effect NSI}$$
$$I = Flavor changing neutral current (FCNC)$$
$$I = Lepton non-universality (NU)$$
$$I = V_{MSW} + \sqrt{2}G_F N_f \begin{pmatrix} \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{\mu\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\mu\tau}^* \end{pmatrix}}{Matter effect NSI}$$

SK-III : Zenith Angle Distributions / Future

SK大気ニュートリノ解析の今後の予定

- v_τ appearance解析のupdate → significance > 3σを目指す
- sub-dominant effect (non-zero θ_{13} , octant of θ_{23}) \mathcal{O} study

など

Preliminary

Nucleon Decays

Preliminary SK-I + SK-II : $p \rightarrow e^+\pi^0 \& p \rightarrow \mu^+\pi^0$

SK-I + SK-II Combined Limit :

 $\tau/B_{e+\pi0} > 8.2 \times 10^{33}$ years (90% C.L.) $\tau/B_{u+\pi0} > 6.6 \times 10^{33}$ years (90% C.L.) SK-I + SK-II : $p \rightarrow \overline{v} K^+$

SK-I + SK-II: Other modes

Many other decay-modes are under study

- n $\rightarrow \pi^0 \nu$
- $\qquad \mathsf{pp} \to \mathsf{K}^+\mathsf{K}^+$
- **pp** $\rightarrow \ell^+ \ell^-$ etc.
- p → πµK

Summary

Electronics Upgrade

- 長期にわたる安定した高速・高精度観測を実現するために開発
- 2008年9月6日 Super-Kamiokande IV スタート、順調にデータ収集
- Solar Neutrinos
 - SK-II太陽ニュートリノ観測の論文publish、SK-Iの結果とconsistent
 - SK-Ⅲでは検出器中心のBG低減に成功、4.5-5.0MeVも解析中

Atmospheric Neutrinos

- Simulation/Reconstruction/MC statisticsの改良を受けてSK-I + SK-II
 データの再解析、振動パラメータをより精度良く測定
- SK-III/SK-IVデータも加えてさらに精密な測定へ(sub-dominant effect)

Nucleon Decays

幅広いdecay modeについて、これまでのLifetime limitを更新