チベット高原での高エネルギー 宇宙線の研究

瀧田正人 東京大学宇宙線研究所
平成18年度共同利用成果発表会
@宇宙線研究所 15/12/2006
(For the Tibet AS γ collaboration)

平成18年度チベット実験関係の共同利 用研究採択課題一覧

- 1. チベット高原での高エネルギー宇宙線の研究 (瀧田正人 東京大学宇宙線研究所)
- 2. 宇宙線による太陽の影を用いた太陽周辺磁場の時間変動の研究 (西澤正己 国立情報学研究所人間・社会情報研究系)
- 3. 一時的または定常的ガンマ線放射の点源天体の探索 (坂田通徳 甲南大学理工学部)
- 4. Knee領域一次宇宙線組成の研究 (柴田槇雄 横浜国立大学大学院工学研究院)
- 5. Sidereal daily variation of ~10TeV galactic cosmic ray intensity observed by the Tibet air shower array (宗像一起 信州大学理学部)

チベットグループ共同利用研究 経費執行状況

校費: 申請額495万円 -> 配分額220万円

2002年に完成したTibet-IIIの維持・運転及び 将来計画のためのR&D費用の一部に使用。

旅費: 申請額890万円 -> 配分額370万円

宇宙線研での研究打ち合わせ

チベット出張海外旅費

<u>The Tibet AS γ Collaboration</u>

Papers (in refereed journals):

- Are protons still dominant at the knee of the cosmic-ray energy spectrum?, Phys. Lett B632, 58-64, (2006)
- Anisotropy and Corotation of Galactic Cosmic Rays, Science 314, 439– 443, (2006)
- Variation of Sun shadow in the solar cycle 23 observed with the Tibet air shower array, Advances in Space Research, 38, 936–941 (2006).
- Primary proton spectrum around the knee observed by the Tibet airshower experiment, Advances in Space Research, 37, 1938–1943 (2006)
- Flux upper limits of diffuse TeV gamma rays from the Galactic plane using the effective area of the Tibet-II and –III arrays, Advances in Space Research, 37, 1932–1937 (2006)
- Underground Water Cherenkov Muon Detector Array with the Tibet Air Shower Array for Gamma-Ray Astronomy in the 100-TeV region, Astrophys. Space Sci., accepted

International Conference

•COSPAR2006 (Beijing, China 2006) 3 talks

•ECRS2006 (Lisbon, Poutugal 2006) 2 posters

•The Multi-Messenger Approach to Unidentified Gamma-Ray Sources:3rd Workshop on the Nature of Unidentified High-Energy Sources (Barcelona, Spain 2006) 1 poster

•ISVHECRI2006 (Weihai, China 2006) 5 talks and 2 posters

•TEXAS symposium2006 (Merbourne, Australia 2006) 3 posters

•Locating PeV Cosmic-Ray Accelerators: Future Detectors in Multi-TeV Gamma-Ray Astronomy (Adelaide, Australia 2006) 2 talks

•Suzaku symposium (Kyoto, Japan 2006) 1 poster

大気チェレンコフ望遠鏡と相補的な 広視野(約2sr)連続観測高エネルギー宇宙線望遠鏡

3~100TeVの高エネルギーガンマ線放射天体の 探索、10¹⁴~10¹⁷の一次宇宙線の観測から、 宇宙線の起源、加速機構の研究を行う。

太陽活動期における"太陽の影" (太陽による宇宙線の遮蔽効果)を観測し、 <mark>太陽近傍および惑星間磁場の大</mark>局的構造を知る。

The Tibet ASy Collaboration

M.Amenomori,¹ S.Ayabe,² X.J.Bi,³ D.Chen,⁴ S.W.Cui,⁵ Danzengluobu,⁶ L.K.Ding,³ X.H.Ding,⁶ C.F.Feng,⁷ Zhaoyang Feng,³ Z.Y.Feng,⁸ X.Y.Gao,⁹ Q.X.Geng,⁹ H.W.Guo,⁶ H.H.He,³ M.He,⁷ K.Hibino,¹⁰ N.Hotta,¹¹ HaibingHu,⁶ H.B.Hu,³ J.Huang,¹² Q.Huang,⁸ H.Y.Jia,⁸ F.Kajino,¹³ K.Kasahara,¹⁴Y.Katayose,⁴ C.Kato,¹⁵ K.Kawata,¹² Labaciren,⁶ G.M.Le,¹⁶ A.F. Li,⁷ J.Y.Li,⁷ Y.-Q. Lou,¹⁷ H.Lu,³ S.L.Lu,³ X.R.Meng,⁶ K.Mizutani,^{2,18} J.Mu,⁹ K.Munakata,¹⁵ A.Nagai,¹⁹ H.Nanjo,¹ M.Nishizawa,²⁰ M.Ohnishi,¹² I.Ohta,²¹ H.Onuma,² T.Ouchi,¹⁰ S.Ozawa,¹² J.R.Ren,³ T.Saito,²² T.Y.Saito,²³ M.Sakata,¹³ T.K.Sako,¹² T.Sasaki,¹⁰ M.Shibata,⁴ A.Shiomi,¹² T.Shirai,¹⁰ H.Sugimoto,²⁴ M.Takita,¹² Y.H.Tan,³ N.Tateyama,¹⁰ S.Torii,¹⁸ H.Tsuchiya,²⁵ S.Udo,¹² B. Wang,⁹ H.Wang,³ X.Wang,¹² Y.G.Wang,⁷ H.R.Wu,³ L.Xue,⁷ Y.Yamamoto,¹³ C.T.Yan,¹² X.C.Yang,⁹ S.Yasue,²⁶ Z.H.Ye,¹⁶ G.C.Yu,⁸ A.F.Yuan,⁶ T.Yuda,¹⁰ H.M.Zhang,³ J.L.Zhang,³ N.J.Zhang,⁷ X.Y.Zhang,⁷ Y.Zhang,³ Yi Zhang,³ Zhaxisangzhu,⁶ and X.X.Zhou ⁸

- (1) Dep. of Phys., Hirosaki Univ., Hirosaki, Japan
- (2) Dep. of Phys., Saitama Univ., Saitama, Japan
- (3) Key Lab. of Particle Astrophys., IHEP, CAS, Beijing, China
- (4) Fac. of Eng., Yokohama National Univ., Yokohama , Japan
- (5) Dep. of Phys., Hebei Normal Univ., Shijiazhuang, China
- (6) Dep. of Math. and Phys., Tibet Univ., Lhasa, China
- (7) Dep. of Phys., Shandong Univ., Jinan, China
- (8) Inst. of Modern Phys., South West Jiaotong Univ., Chengdu, China
- (9) Dep. of Phys., Yunnan Univ., Kunming, China
- (10) Fac. of Eng., Kanagawa Univ, Yokohama, Japan
- (11) Fac. f of Educ., Utsunomiya Univ., Utsunomiya, Japan
- (12) ICRR., Univ. of Tokyo, Kashiwa, Japan
- (13) Dep of Phys., Konan Univ., Kobe, Japan

- (15) Dep. of Phys., Shinshu Univ., Matsumoto, Japan
- (16) Center of Space Sci. and Application Research, CAS, Beijing, China
- (17) Phys. Dep. and Tsinghua Center for Astrophys., Tsinghua Univ., Beijing, China
- (18) Advanced Research Inst. for Sci. and Engin., Waseda Univ., Tokyo, Japan
- (19) Advanced Media Network Center, Utsunomiya University, Utsunomiya, Japan
- (20) National Inst. of Info., Tokyo, Japan
- (21) Tochigi Study Center, Univ. of the Air, Utsunomiya, Japan
- (22) Tokyo Metropolitan College of Industrial Tech., Tokyo, Japan
- (23) Max-Planck-Institut fuer Physik, Muenchen, Germany
- (24) Shonan Inst. of Tech., Fujisawa, Japan
- (25) RIKEN, Wako, Japan
- (14) Fac. of Systems Eng., Shibaura Inst. of Tech., Saitama, Japan (26) School of General Educ., Shinshu Univ., Matsumoto, Japan

Our site : Tibet

Yangbajing , Tibet, China 90°53**E**, 30°11**N**, 4,300 m a.s.l. (606g/cm²)

Tibet Airshower Array

Tibet III (37000m²)

Yangbajing (4300a.s.l.=606g/cm²), Tibet, China

Ð

a

a.

Total 789 detectors Mode Energy ~3 TeV Angular Resolution ~0.9 deg @3TeV Trigger Rate ~1700 Hz

観測された月の影

影の南北のスレ

影の西へのズレ

Anisotropy of galactic cosmic rays

I: tain-in, II:loss cone, III: Cygnus

i) No significant temporal variation

iii) Corotation (CR and Galaxy)

ii) <u>New Anisotropy in the Cygnus region</u> iv) <u>Anisotropy fade away ~ 300 TeV?</u> Science, V<u>314</u>, pp.439 – 443 (**2006**)

Tail-in and loss-cone model of the anisotropy

Ref: K. Nagashima, K. Fujimoto, R.M. Jacklyn, J. Geophys. Res. V103, 17429 (1998).

- 1) Heliospheric magnetic field is not enough for TeV CR anisotropy.
- 2) TeV CR anisotropy might be caused by the Local Interstellar Could (~ a few pc).

<u>*R_t*~ 0.01pc (for 10TeV proton in 1mG)</u>

宇宙線は太陽によって遮蔽される。 正電荷をもった宇宙線は 太陽磁場、惑星間磁場によって 曲げられ、観測される"へこみ"は 磁場の変動によって"移動"する。

太陽活動は11年周期で極大期を迎え、 磁場の変動も活発になる。 この"へこみ"の"移動"を観測すること によって、太陽磁気圏の大局的磁場構造 を知ることができる。

Solar Activity – Sunspots (Monthly) Monthly Sunspots 1990–2003

Date

Observation – Sun Shadow

Anti-correlation between Sun shadow and sun spot # @ 10 TeV

Potential Field Source Surface Model

- Radial Field model by Hakamada, Chubu U.
- scalar potential in the coronal magnetic field
 - expansion by spherical harmonics(order: n)
- Assumption
 - No coronal current (no influence on magnetic field)
 - Scalar potential ($@R_{2.5}$)=0 (to prevent troidal magnetic field)
 - Only radial component at the solar surface

Yearly Variation of Deficit within 3° around the apparent sun's direction @ 10 TeV

Yearly change of Sun shadow (1996–2005), 3TeV Gnevyshev gap

What we have found out:

Crab, Mrk501, Mrk421 observed, but

No new steady bright TeV γ -ray point source found Possible diffuse γ -ray signal from Cygnus region?

P, He, all-particle E-spectrum (Galactic cosmic rays accelerated to the knee region $\sim 10^{15}$ eV)

What we should do next:

- 1. 100 TeV (10 1000 TeV) region γ -ray astronomy Where do galactic cosmic rays under knee come from?
- 2. E-spectrum of heavy component around ' knee' All-particle knee = CNO? Fe knee?

<u>1. 100 TeV γ-ray astronomy</u>

Cosmic ray	Acceleration	Origin	
New 14 HESS sources	Hard spectral indices	Faint in other wavelengths	
Theoretical possibility	 π⁰ decay IC* 	 Old SNR Yamazaki et al, MNR. 371, 1975 (2006) Asymmetric PWN Blondin et al, ApJ, 563, 806 (2001) 	
Key observation	100 TeV region	Wide sky survey	

* >100TeV IC is difficult due to sync. cooling & KN effect

Tibet Air Shower (AS) Array

Tibet Muon Detectors (Image) Tibet China (90.522°E, 30.102°N) 4300 m a.s.l.

Number of Scinti. Det.
 0.5 m² x 789
 Effective Area for AS ~37,000 m²

 Energy region
 Angular Resolution (Gamma)
 Energy Resolution (Gamma)
 F.O.V.

AS ~37,000 m² → ~50,000 m² ~TeV - 100 PeV on ~0.4 @10 TeV ~0.2 @100 TeV n ~70% @10 TeV ~40% @100TeV ~2 sr

Tibet Muon Detector (MD) Array

Counting the number of muons accompanying an air shower Gamma/Hadron separation

Sensitivity Simulation

Air Shower Generation - Corsika Ver.6.204
 CR: 0.3TeV-10PeV, Crab Orbit
 Chemical components
 Interaction model: QGSJET01c
 Gamma: 0.3TeV-10PeV, Crab Orbit
 E^{-2.6}
 Core position:
 Throw randomly within 300m radius

Scintillation det. (Tibet AS) - Epics UV8.00 Estimate energy, direction, core position, ...

 Soil + Cherenkov det. (Tibet MD) - GEANT4 8.0 Reflectance at walls 70% Att. length ~40m@400nm (Dependant on wave length) Quantum Eff. ~20%@400nm (Dependant on wave length)

 Accidental muons
 300 Hz/m² x 9540m² x 200 ns
 = ~0.57 muons/an air shower (Poisson noise distribution)

Water Cherenkov Technique

- Already established technique
- High cost performance
- Easy to design long path length detector
- □ Cherenkov threshold (electron 750keV in the water)

High rejection power for low energy $e^{+/-} \& \gamma$ Good technique for muon detection

	Milagro	SK (Anti)	Tibet MD
PMT	8"ФРМТ	8"ΦPMT	20"ΦPMT
Detector Area	80mx60m Depth8m (Upper4800m ² /Lower2000m ²)	All Surface ~7400m ² Thickness ~2.5m	9540m ² Depth1.5m
Unit	1PMT@2.8m × 2.8m	2PMTs@6m ²	2PMTs@52m ²
Photo- Coverage	0.4%	0.52%	0.75%
Number of PMTs	Upper: Depth 1.4m, 450 Lower: Depth 6.0m, 273	1885	368

Known Galactic Sources in the Northern Sky

How Many New Sources?

Aharonian et al, ApJ, 636, 777 (2006)

Fig. 8.—Distributions of the photon index of the new sources. The mean photon index is 2.32 with an rms of 0.2.

Induces are harder

(If it is constructed at southern hemisphere)Most of new HESS sources detectable by Tibet AS+MD

6. Summary

Sensitivity simulation

Detailed simulation was done (two configurations). $F(>100TeV) \sim 2 \times 10^{-15} \text{ cm}^{-2} \text{ s}^{-1}$ (1 calender year, 5σ or 10 events). Improve sensitivity by an order of magnitude. Inner MDs are very important.

Candidates of 100 TeV sources in the northern sky Promising: Crab, TeV J2032+4130, HESS J1837-069, MGRO J2019+37 Interesting: Cas A, HESS J1834-089, LS I +61 303 (Need several years)

+ ~ several to ~10 new sources?

プロトタイプ MD

MD:(7.5m×7.5m, 水深 1.5m, 20 ФРМТ (R3600)×2)×2台

Yangbajing Air shower Core detector

- Measure the energy spectrum of the main component at the knee.
 Detector: Low threshold BD grid + AS array.
- •Observe energy flow of AS core within several x 10m from the axis.

YAC array

Design of YAC 40cm x 50cm, 20x20 channels $S=5000m^2$

Q= 2 E0=1.5E+06 Ne=9.6E+05 s= 1.18 Z= 0.91 Nb=5.0E+04 Top=4.2E+04

3.75m spacing 400ch N_b >100, any 5 (>30GeV)

MC Event Map

Proton

Q=26 E0=6.4E+06 Ne=2.8E+06 s= 1.19 Z= 0.95 Nb=6.4E+04 Top=4.5E+04

Fe

Separation of Fe by YAC (use ANN) Iron and others

Detection efficiency of YAC

Expected results by YAC

