Dec. 15, 2006 宇宙線研共同利用 研究成果発表研究会

スーパーカミオカンデ

大林 由尚 宇宙線研 神岡宇宙素粒子研究施設

SK2005年10月~2006年4月 SK完全再建

・ 全てのPMTに衝撃波防止カバーを取り付けた。

Dec. 15, 2006

Y.Obayashi @ 宇宙線研共同利用研究成果発表研究会

2006/7/11 観測再開

 2006年7月、最後のPMTを 取り付け、満水にし、観測 再開した。

Run 30592 Sub 1 Ev 1 06-07-11:05:46:56 Inner: 927 htts, 4680 pE Outer: 169 htts, 933 pE (in-time) Trigger ID: 0x0b D wall: 169:0.0 cm Fully-Contained Mode

0.7- 1.3

Y.Obayashi @ 宇宙線研共同利用研究成果発表研究会

Super-Kamiokande

39.3 m

- 50kton pure water (22.5kt fid.vol.)
- 11200 (Inner detector) + 1800 (Outer detector) PMTs
- 1000m underground → 2700m wat. eq.

History

1996 1997	Start	# of PMT (Photo Coverage)	Energy Threshold (Solar v)	Major Physics Outputs
1998 1999	SK-I	11,146 (40%)	5 MeV	Atm. v Oscilation Phys. Rev. Lett. 81,1562(1998)
2000 2001	/ → 事故			Solar v Oscilaltion Phys. Rev. Lett. 86,5651(2001)
2002 2003 2004	部分再建 SK-II	5.182		Atm. v L/E Phys. Rev. Lett. 93, 101801(2004)
2005 2006	完全再建	(19%)	/ IVIEV	K2K Final Result Phys.Rev.D74:072003, (2006)
2007 2008	SK-III	11,129 (40%)	4 MeV(plan)	

Dec. 15, 2006

Y.Obayashi @ 宇宙線研共同利用研究成果発表研究会

SK-III Startup Calibrations

Gain adjustment of PMT

- タンク外で一部のPMTを同じgain (= QE * Amplification)になるよう に適正HV値を求めておく。(Pre-Calibration)
- SKに全PMTを取付、注水後、タンク 内のシンチレータをXenon ランプで 光らせ、取り付けた全てのPMTに ついて近傍のpre-calibrated PMT と1000 同じ gain になるようHV値を調整 800
- HV最終調整後、最終的な gain の ばらつきを測定した。
 → RMS=1.3%

Construction Construction Construct

Hit rate / average Barrel タンク内に⁵⁸Ni (n, γ) ⁵⁹Ni スを入れる (1 photon level の光源) 各PMTのHit Rateを求める。 端 中央 0.7 -1000-500 500 1000 1500 $(r^2, acceptance correction)$ 1.3 average Hit rate / average Bottom l or 1.2 1.1 Light Source \rightarrow 9MeV γ -rays emitted rate 0.9 from 58 Ni (n, γ) 59 Ni 0.9 Hit 0.B reaction 中央 中央 周辺 周辺 0.7 252Cf 3000 × 10³ 1000 2000 1000 2000 × 10 Top-Bottom asymmetry = +0.3%20cr top-bottom asymmetry = (<top> - <bottom>) / <barrel> 20cm

K Energy calibration for Low E

- "N50" = Num. of hits in 50ns timing window
- SK-III: N50 = 74.97 \pm 0.06 σ = 10.37 \pm 0.05
- SK-I:
 - $N50 = 73.98 \pm 0.08$ $\sigma = 10.38 \pm 0.06$
- Performance is Comparable.

LINAC 13.6 MeV/c Mode

Atmospheric Neutrinos •vµ disappearance analysis • $\nu\mu \rightarrow \nu\tau$ or other modes? **Solar Neutrinos** •SK-I + SK-II results •Improvement for SK-III 券Supernovae Neutrinos Proton Decay Search

Atmospheric Neutrinos

Y.Obayashi @ 宇宙線研共同利用研究成果発表研究会

Zenith Angle Distribution

Dec. 15, 2006

Y.Obayashi @ 宇宙線研共同利用研究成果発表研究会

Oscillation Analysis

Update from Phys. Rev. D 72, 052007 (2005) (SK-I results)

L/E analysis

•
$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 (eV^2)L(km)}{E(GeV)}\right)$$

- Select good L/E resolution (<70%) events
- Perform oscillation analysis with L/E binning

at $(\sin^2 2\theta, \Delta m^2) = (1.00, 2.3 \times 10^{-3} \text{eV}^2)$

3 Flavor Oscillation

• In the case $\theta_{13} \neq 0$:

$$P(\nu_{e} \rightarrow \nu_{e}) = 1 - \sin^{2} 2\theta_{13} \sin^{2}(\frac{1.27\Delta m^{2}L}{E})$$

$$P(\nu_{\mu} \rightarrow \nu_{e}) = P(\nu_{e} \rightarrow \nu_{\mu})$$

$$= \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2}(\frac{1.27\Delta m^{2}L}{E}) \quad \longleftarrow \quad \text{Ve excess may be seen}$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1$$

$$-4\cos^{2} \theta_{13} \sin^{2} \theta_{23}(1 - \cos^{2} \theta_{13} \sin^{2} \theta_{23})$$

$$\times \sin^{2}(\frac{1.27\Delta m^{2}L}{E})$$

• Matter effect enhance v_e appearance

 $\nu\mu$ → ve oscillation probability, $\Delta m^2 = 2.5 \times 10^{-3} eV^2$, $\sin^2 \theta_{23} = 0.5$, $\sin^2 \theta_{13} = 0.04$

Phys. Rev. D 74, 032002 (2006)

3 Flavor Analysis Result

Phys. Rev. Lett. 97, 171801 (2006)

Tau Appearance Search

(signal efficiency: 43.1%)

Exotic Modes?

vµ→vs? Neutrino Decay? Decoherence?

Dec. 15, 2006

Y.Obayashi @ 宇宙線研共同利用研究成果発表研究会

19

٠

L/E Analysis with exotic modes

Update from Phys. Rev. Lett. 93,101801(2004)

Solar Neutrinos

• ⁸B neutrino – electron scattering $v + e^- \rightarrow v + e^-$

Typical Solar v event

Solar v Data of SK-I

Solar v data of SK-II

$A_{DN} = 2x \frac{Day - Night}{Day + Night} = -0.063 \pm 0.042 \text{ (stat.)}$

SK-1 A_{DN} = -0.021 ±0.020 +0.013 -0.012

SK Spectra @ global best fit

⁸B flux = 0.90 x SSM = 5.21×10^{6} cm⁻²s⁻¹ hep flux = 8.62 x SSM = 6.79×10^{4} cm⁻²s⁻¹

SK Global Oscillation Analysis

SK Global Oscillation Analysis

Supernova Neutrino Bursts

- No supernova signal during SK-I and SK-II (total livetime =2589.2 day)
- Supernova rate limit in our galaxy is obtained as
 0.32 SN/yr @ 90% C.L
- After combine SK-I ,SK-II, and Kamiokande results
 0.20 SN/yr @ 90% C.L

Supernovae Relic Neutrinos

Y.Obayashi @ 宇宙線研共同利用研究成果発表研究会

SRN Flux Limit

Flux limit $SK-II < 3.8 \ [/cm^2/sec]$ $SK-I < 1.2 \ [/cm^2/sec]$ Phys. Rev. Lett. 90, 061101(2003)

Final Proton Decay Search ($p \rightarrow e^+ \pi^0$)

• τ_p /Branch > 8.4 x 10³³years (90% CL)

$n - \overline{n}$ oscillation

 $\mathcal{M}_{\Delta R,44} \sim 10^5 GeV$

Livetime for SK-I=4.077yrs $N_{obs}=20, \mu_{B}(expected BG)=21.31$

 $\tau / B = 1.77 \times 10^{32} \text{ yrs (90\% CL)}$

Y.Obayashi @ 宇宙線研共同利用研究成果発表研究会

Computer Upgrade (2007/3~)

- Computation
 - Sparc Solaris \rightarrow Intel Linux
 - Offline computation power:
 - Sparc 200CPU → Xeon 1128core (33840 SPECint_rate_base2000)
- Storage
 - HPSS (Tape strage) ~700TBytes
 - → DISK 700TB + Tape 400TB
- Network
 - Full GbE (Partially 10GbE)

(0.75MW 50GeV PS , 30GeV @ T=0)

Construction Status of J-PARC

平成18年2月航空写真

T2K Beam Power Estimation

Summary

- Full reconstruction is finished, SK-III started
- Atmospheric neutrinos
 - Oscillation analysis results based on SK-I + SK-II are presented
 - Consistent with $\nu \mu \rightarrow \nu \tau$ oscillation.
 - Some non-tau modes are tested \rightarrow unlikely
- Solar Neutrinos
 - Oscillation analysis based on SK-I + SK-II are presented though energy threshold of SK-II is 7Mev
- Supernova Neutrinos
 - Upper limits for SN and SRN rate are obtained
- Proton decay
- Future Plan:
 - SK upgrade
 - T2K experiments