ICRR Review sep 28, 2007

Highest energy cosmic rays

Yoshiyuki Takahashi

The University of Alabama in Huntsville, USA and RIKEN, Japan

Outline

Experimental updates from major stations

- Dramatic Advancement of new data-taking by Auger lab.
- Steeper spectrum above about E_{GZK}
- Conflicting compositions by Hi-Res vs Auger analyses
- Pointing unsuccessful, requires Super-GZK energies > 7 10¹⁹ eV
- Super-GZK-energy exploration is tough: need 10⁶ L
- Varieties of trivial/non-trivial systematics getting better understood

Astronomical/Astrophysical perspectives

Localization and Horizons: Effects of GMF and EGMF getting perceived and non-isotropy is predicted

Super-LHC/beyond-SM physics yet to be explored

Generally-conceived Roadmap for explorations

UHECRs Energy Spectrum

Refs from 28th ICRC papers (Merida)
summarized by

(1) A. Watson / Highlight paper
(2) M. Teshima / Rapporteur paper
Thanks to Alan and Masahiro

and

• APC Workshop (Paris) May 2007

HiRes Spectrum Broken power law fits

Expect 46.2, observe 14 P=7x10⁻⁷ (4.8_)

Systematic Error in HiRes <u>Mono</u> Energy Spectrum

Energy Scale Uncertainties

- Missing Energy 5%
 Energy Loss Rate 10%
 Fluorescence Yield 6%
 Atmospheric Conditions 4%
 Photometric Calibration 10%
 Aperture ?% can be large
- Total Energy Scale Uncertainty 17% (+?: F-yield)
 Flux Uncertainty (with β=2.8) 30%

HiRes Mono / Stereo Aperture for Energy Spectrum

Ground-based FD has a severe proximity and extinction problems - need multi-eyes

HiRes Stereo Energy Spectrum

- With geometrical constraint
- <u>Statistically</u> Consistent with Mono spectrum
 (& may be flat spectrum, too)
 But with much limited aperture
- 11 observed, where 37.4
 / 29.8 expectation
 (AGASA and flat)
 -4.3 σ, -3.4 σ deviation

Aang

rado Sur

090707 ~ 85%

All 4 fluorescence buildings complete, each with 6 telescopes

1st 4-fold on 20 May 2007

AIM: 1600 tanks

Auger: Energy Calibration - firm up to E19.5 eV

Auger SD Energy Spectrum

Auger Multi-Hybrid Concept

The Auger Observatory combines independent measurement techniques

Surface Detector Array (SD)

Air Fluorescence Detectors (FD)

- reliable geometry and energy measurement
- mass composition studies in a complementary way

Hybrid data set used for this analysis:

fluorescence events in coincidence with a least one SD station

Auger Hybrid Energy Spectrum

Auger Residual plot

Auger Spectrum comparisons with Proton Model and with Mixed composition model - not like p-GZK

Comparison with Pure Proton Model

HiRes vs. Auger

Pair creation DIP

by V.Berezinsky

Dip V.Berezinsky

Auger Spectrum x 1.5 re-scaling M.Teshima (may be more)

UHECRs photon limit

EHE γ -rays does not travel much distance, unless Coleman-Glashow e- pair production in 2.7K CMB-filled Vacuum

EHE γ -rays travel > Gpc only in Quantum Gavity or C-G vacuum

Exploration 3: Test of vacuum of Loop Quantum Gravity

 Spin network makes time ticks discretely in geometry of non-Cartesian zigzags

- Lorentz Invariance is not mandatory with QG;
- Dispersion of QG medium causes delay of c (E) < $c_0 \rightarrow \gamma$ comes to us **E** >> 10 TeV for $\varepsilon = 10^{-3}$, $4 m_c c^4 = E^2 - (pc)^2 = E^2 (\varepsilon/E - \xi E/E_0) < 0$.

Quantum gravitational medium effect

(Ellis et al, 1992; Amelino-Camelia et al. 1998)

- General photon dispersion relations* of quantum gravity granular vacuum $E_{\text{OG}} \approx 1/L_{min}$, where $L_{min} \approx L_P \approx 10^{-33}$ cm.
- ٢
- Dispersion: $c^2p^2 = E^2[1 + \xi E/E_G \qquad 2^2/E_{QG}^2)], \ \xi = \pm 1.$ Energy-dependent velocities $\mathbf{v} = \partial E/\partial p \approx c(1 \xi E/E_{QG} + \mathbf{v}_G^2))$

Delay of arrival time $\Delta t \approx \xi$, (or $\Delta t^* \approx \pm EL/E_Pc$)

S/N-Sensitivity factor $\eta = |\Delta t^*| / \delta t$: [$\delta t \ge 1ms$ (GRB), $\ge 1 \ \mu s$ (pulsar)] ٢

GRB 20 MeV γ	GRB lensing	Pulsar AXAF x	Pulsar (1 eV)	ΕΗΕ γ 10 ²⁰ eV
~ 1 (∆t ~ ms)	10 ⁻⁶	10 ⁻⁸	10 ⁻¹⁰	10 ¹⁰ (∆t ~ year)

Note: insensitive except EHE γ However, HST quasar diffraction rings already denied the 1st order

HST quasar diffraction rings deny 1st-order QG medium effect

Bubble burster. Irislike "Airy ring" around quasar PKS 1413+135 (black dot, *center*) may nix some versions of quantum foam.

Auger: Photon limit

No photons to support SHDM/TD models and Coleman-Glashow Auger 20years operation will reach GZK gamma flux of ~0.1%

UHECRs Xmax and Chemical composition

Elongation rate:

How we try to infer the variation of mass with energy

Energy

HiRes Xmax distribution

Very different

Questionable H_{max} for the separation of p/Fe Fly's Eye & HiRes-mono Xmax distribution

* (except hybrid-Auger) No past experiments are capable of determining H_{max} from the true top of the atmosphere, H = 0 g/cm², with the precision < 50 g/cm² required for the statistical separation of p/Fe by H_{max} .

• H_{max} should not be that estimated for the shower max density ρ converted from the height measured from the ground-level.

• It has to be measured from the top, $H = 0 \text{ g/cm}^2$, which involves errors > 50 g/cm² due to the angular errors O (a few degs) alone, as well as due to more errors in H_{max} (km) by density ρ .

* Famous 3 x 10^{20} eV (Fly's Eye) event, that favored Fe curve, is uncertain, because it has 2 - 5 deg errors (horizontal axis is uncertain to > 50 g/cm², and the H_{max} from the ground-level is also that much uncertain.) (1) It is unclear whether the event-by-event correction was made for the varying atmospheric pressure of the groundlevel (which varies to \pm 20 g/cm²).

(2) FE/Hi-Res mono didn't have accurate angles for each event to give accurate H_o (Top) = ~ 0 g/cm² to define the true X_{max} , for which angular error alone should make X_{max} errors larger than 20-50 g/cm² for each event.

FIG. 1.7: The average X_{max} as a function of primary energy obtained by Fly's Eye. Two upper and lower lines correspond to pure proton and pure iron primaries. The energy dependence of X_{max} can be interpreted as a change in the chemical composition from heavier to lighter between 10¹⁷ eV and 10¹⁹ eV.

HiRes Xmax

Results

Auger Xmax distribution

Less increasing elongation rate & comparison with M.C. - A problem

Red: Proton Blue: Iron

Single line fit gives a better agreement with M.C..

Varying mixed composition? or interaction changing? EPOS?

Bias in Low energy range?

Auger: Chemical composition study

SIBYLL

QGSJETII

Summary:

- excellent X_{max} resolution ($\approx 20 \text{ g/cm}^2$ at high energies)
- > X_{max} scale uncertainty $\leq 15 \text{ g/cm}^2$
- significantly different D₁₀ above and below 10^{18.35} eV
- ► shower simulations → mixed composition at all energies

Xmax Auger and HiRes - mutually in conflict, too

UHECRs Anisotropy
HiRes Anisotropy Negative excess at Anti-G.C.

- Integrate over 20° circles
 - Data
 - Significance plot for 10^{17.5} < E < 10^{18.5} eV.
 - Akeno/AGASA result

Auger: Galactic Center

 $1 < \mathsf{E} < 10~\mathsf{EeV}$

Results insignificant:

1 < E < 10 EeV - Search for point-like/extended souces

search	window size	n_{obs}/n_{exp}				
extended	10° (TH)	$1463/1365 = 1.07 \pm 0.04(ext{stat}) \pm 0.01(ext{syst})$				
	20° (TH)	$5559/5407 = 1.03 \pm 0.02(\text{stat}) \pm 0.01(\text{syst})$	1000000000			
point-like	$0.8^{\circ} (G)$	$16.9/17.0 = 0.95 \pm 0.17(ext{stat}) \pm 0.01(ext{syst})$	5.6			

Auger results: Medium scale anisotropy

Is this a Hint of broad clustering? 6~25 degrees scale?

TEST OF SIGNALS FROM PREVIOUS EXPERIMENTS

SMALL SCALE CLUSTERING: θ = 2.5° and E > 40 EeV AGASA: obs/exp = 7/1.45 (for N=57) AUGER: obs/exp = 2/1.5 COMPATIBLE WITH ISOTROPIC FLUX

Does a signal appear at a smaller energy? (possible energy calibration mismatch)

For N =150 events (E > 30 EeV) obs/exp = 14/8.5No strong excess in the relevant range

INTERMEDIATE SCALE CLUSTERING: $\theta = 25^{\circ}$ and E > 40 EeV

SOME HINT OF CLUSTERING IS PRESENT, ALTHOUGH WEAKER THAN AT HIGHER ENERGIES

UHECRs Clusters? Any point source correlation?

Venser'l

UHECR deflections

Galactic Magnetic Field

- Deflections in regular component $\sim 2^\circ$ for $E \sim 10^{20} \ {
 m eV}$
- Deflections in turbulent component are several times smaller.

Extra-galactic Magnetic Field

For now we have to rely on numerical simulations.
 Expected deflections are small according to

Dolag, Grasso, Springel & I.T. (2003) Bruggen, M. Ruszkowski, A. Simionescu, Hoeft, & Vecchia (2005)

See however Sigl, F. Miniati & T. Ensslin (2003)

Charged particle astronomy can be possible.

lls rot anoitailer?

Predictions BL Lacs only and surely requires UHE energy

Assume: set of 156 BL Lacs is uniform (this may not be the casel)

Experiment	$\sqrt{2}\sigma$	N	S	В	$\Delta n_{95\%}$	N_0
HiRes, original	0.85°	271	7.46	3.54		
HiRes (stereo)	0.85°	190	5.23	2.48	1-17	271
AGASA	3.39°	1500	43.4	310	308-417	3870
PAO (surface)	1.98°	8000	87.9	216	239-413	3517
PAO (hybrid)	0.85°	2000	24.8	9.10	15-66	467
TA (surface)	2.19°	8000	239	710	785-1235	1560
TA (hybrid)	0.88°	2000	58.6	30.3	47-161	277

- S events from sources
- B chance coincidences

 N_0

- $\Delta n_{95\%}$ 95% interval for the number of coincidences
 - number of events needed to match sensitivity of HiRes

Correlations with BL Lacs in the AGASA data

Caveat (in case of PAO):

Southern and Northern BL Lacs may be different

Distributions in radio flux are different: $P_{KS} \sim 10^{-6}$

More cautions on the search for Point Sources

Super-GZK allows point-source' sharp IDs, but Sub-GZK is overwhelmed by backgrounds

Where is Our Crab? VHE gamma

Whipple 1989

Next few slides

- by A. Olinto 2007

Auger: Correlation with BL-Lacs No correlations with point source

BUTI	TES	TOF	PREVIC	DUS C	ORREL	ATION S	IGNALS	
501.	Test A	22 BL L (8 in f.o	acs m < 1 .v.)	8 z > 0.1	or unknown	F6 > 0.17 Jy	(9 th catalog)	
Nows will	Test E	157 BL	Lacs m < 1	8 (10 th cat	alog)			
	Test C: 14 BL Lacs selected by possible association with EGRET sources							
come soor		(3 in f.c).v.)	51				
for	Test D: 204 BL Lacs m < 18 (10 th catalog) Subclasses: a) 157 BL (76 in f.o.v.) b) 47 HP (30 in f.o.v.)							
positve	Test	E _{th} (EeV)	Number of events	Angular size	Observed	Expected (isotropic)	Probability	
sources	Α	24	267	2.5°	1	1.0	0.63	
abovo	В	40	62	2.5°	2	2.5	0.71	
abuve	C	24	267	2.9°	1	0.5	0.41	
7E19 eV?	D	10		0.00	11	12.1	0.66	
	a) b)	10	1672	0.9°	8 3	8.9 3.2	0.67 0.62	

OUR DATA DOES NOT SUPPORT ANY OF THESE PREVIOUSLY REPORTED EXCESSES OF CORRELATION

10²⁰eV proton can be traced back to a point source

Achtung!

- Auger data are NOT sensibly qualified for point-source tracking:
- (1)Mostly sub-GZK and,
- (2) GMF of the southern sky is high and very unfriendly,
 below energies less 10²⁰ eV

Astro-ph/0607543v1 2006

10 Gustavo Medina Tanco

UHECR Astronomical Theories

large-scale anisotropy could appear with statistics > 1000 if stellar origin (or cosmological)

Galaxy Cluster (Inoue 2006)

results: anisotropy

anisotropy

Magnetic field and large scale structure of Universe by G. Sigl et al.

If EHE sources are cosmological like Topological Defects

Medium Scale Anisotropy M.Kachelriess & D.Semikoz

Arrival directions for E>40 EeV in HiRes (E>52 EeV in AGASA)

>4x10¹⁹eV after Global Energy Scaling

After including penalty \rightarrow Pch~3x10⁻³

Probability of autocorrelation

M.Kachelriess and D.S., astro-ph/0512498

Bright Galaxies (Takami - Sato 2006; Olinto et al 2007)

Matter (90Mpc) and Galaxies(45Mpc)

Dark Matter within 20 Mpc

Proton Horizon

Allard

Fe Horizon

Exploratory Test Objectives

Neutrinos Super-LHC Physics Atmospheric Transients

FLUORESCENT EVENTS : PROTON - NEUTRINO SEPARATION

Rejection > 10^{-4}

but for Ethr=10¹⁸eV rejection>10⁻⁶ are needed

EXPLORATION : Extra-dimension Neutrino cross section gets very high if higher dimension \rightarrow > 1 µb at 10²⁰ eV

Anchordoqui, Feng, Goldberg, Shapere Phys Rev D65, 124027 (2002)

Marv Hall 2005

In these mini-black hole calculations, one takes the neutrino-parton cross section to be

$$\hat{\sigma}(\nu j \to BH) = \pi R_s^2 \mid_{M_{BH} = \sqrt{\hat{s}}} \theta(\sqrt{\hat{s}} - M_{BH}^{\min})(11)$$

where the Schwarzschild radius R_S is given by

$$R_{S} = \frac{1}{M_{D}} \left[\frac{M_{BH}}{M_{D}} \left(\frac{2^{n} \pi^{\frac{n-3}{2}} \Gamma(\frac{3+n}{2})}{2+n} \right) \right]^{\frac{1}{1+n}} .$$
(12)

JEM-EUSO maximum sensitivity for Neutrinos with extra* dimesnsions (preliminary; TBC)

Positive role of LPM for earthskimming neutrino observation

The LPM effect would significantly increase the detectability of the Earth-skimming events (10¹⁹ - 10²¹ eV) and Upward neutrino events at 10¹⁶⁻¹⁹ eV by enhancement of ~ x 50 effective target.

JEM-EUSO Phase-A incorporates this.

Kusano, Inoue (Saitama Univ., 2000)

Important Cosmic Relic $v^{*}s$ (1.95 K), \mathbf{v} kicked upward in E to EHE via pv elastic scattering in ν -rich (x10²) and in EHE-rich (x102) clusters It could become observable if extradimension is true. Need tests by CR vP_{EHE} + v_{1.95K} -> v_{EHE} + P

New Projects

- 1. TA is in commissioning phase
 - Full operation from autumn 2007
 - TALE will follow to extend coverage toward lower energies (Transition from galactic to extragalactic)
- 2. Auger North (200,000 km2 sr yr at 2014) considered
- **3.** From Space
 - TUS (by FSA), JEM-EUSO (by JAXA) being selected;
 - Super-EUSO discussed (in ESA)
 - JEM-EUSO goes to ~M km2 sr yr (L) (2013 \rightarrow)
- R&D for radio detection → H. Falcke's talk at APC/ ICRC

LOPES, CODALEMA Looks promising

New photodetector

SiPM → Improve HEAP experiments

- Air Florescence yield measurements
 - Flash, Airfly
 - Final results will come soon

Telescope Array

- Balanced SD ~ FD hybrid for UHECRs
- Aperture = AGASA x ($12 \sim 23$)
- Complimentary to Auger South
- Energy spectrum: by SD and FD independently
 both are from EM component measurements
- GZK cutoff, Cluster in North ?
- Construction \sim 95% completed, commissioning phase
- Autumn 2007, Full Data Collection starts.
- Low Energy extension TALE planned.

Why Plastic Scintillator ?

Conserve AGASA energy scale

Sample electromagnetic shower (~90% of Eprimary) >>> less dependent on may vary over GZK energy

primary composition hadronic interaction @EHE

Why 2 Layers ?

- Trigger & Calibration
- Extension of Dynamic Range
- ID of EM shower

A shower event recorded by TA-SD

Example: shower event

July 7, 2007

ICRC20007, Merida, Mexico

TALE $10^{16.5} eV \sim 10^{18.5} eV$

TALE Infill Array

- Standard TA: 1.2 km grid
- Surface Infill: ~100 detectors on 0.4 km grid
- Muon stations: 16 on 0.2 km grid, additional detectors on larger grid

Galactic/Extragalactic Transition:

HiRes/MIA hybrid experiment, and HiRes Stereo, results show transition from heavier to lighter composition, complete by about 1018 eV.

Complimentary to Kaskade-Glande + tower FD

Auger North

The Pierre Auger Observatory – 2 Sites

Need for 2 sites realized since beginning of project

Northern Site: Colorado

Southern Site: Mendoza

Hybrid detection & energy calibration
Water Cherenkov surface array

1600 stations, 3000 km²
1.5 km triangular grid

Completion end 2007
Science flowing - 38 papers here

•Retain features & functionality of Southern Site •Hybrid detection & energy calibration •Water Cherenkov surface array •4000 stations, 10,370 km² •Square mile grid

> Altitude and latitude are similar

> > Southern and Northern sites are shown at the same scale

Auger South upgraded by HEAT & AMIGA

co July, 2007

Auger North

Radio R&D (new way of viewing showers) to be established

Astroparticle Physics: Radio Detection of Particles

- Cosmic Rays in atmosphere:
 - Geosynchrotron emission (10-100 MHz)
 - Radio fluorescence and Bremsstrahlung (~GHz)
 - Radar reflection signals (any?)
 - VLF emission, process unclear (<1 MHz)
- Neutrinos and cosmic rays in solids: Cherenkov emission (100 MHz - 2 GHz)
 - polar ice cap (balloon or satellite)
 - inclined neutrinos through earth crust (radio array)
 - CRs and Neutrinos hitting the moon (telescope)

Radio Observations of the Moon: Different Frequencies

- The shower is ~10 cm wide but 2 m long!
- Cherenkov emission is anisotropic:
 - maximum emission in narrow forward ring at GHz frequencies
 - Lower emission but almost isotropic at lower frequencies
- Low Frequencies have longer attenuation lengths and sample larger volume.

Scholten, et al. (2006, in press)

Low-Frequency Observations of the Moon: SKA

Advantages of Radio Emission from Air Showers

- High duty cycle (24 hours/day minus thunderstorms)
- Low attenuation (can see also distant and inclined showers)
- Bolometric measurement (integral over shower evolution)
- Also interesting for neutrinos
- Potential problems:
 - Radio freq. interference (RFI)
 - size of footprint
 - only practical above ~10¹⁷ eV.

TUS Mission Launch 2009-2010

1- in the transportation mode,

Mirror area is up to 2 m², pixels cover 4000 km² of the atmosphere (orbit height 400 km).

Space JEM-EUSO Telescope on ISS

JEM-EUSO Telescope will be attached to Exposure Facility of Japanese Experiment Module (JEM/EF) of ISS in 2013

Vertical Mode

Tilted Mode Larger effective area (x5) with ~35°tilt

Progress of the study of EECR expected in the near future:

JEM-EUSO ~1M km² sr yr, >1000events above $7x10^{19}eV$

Particle Astronomy can begin

Summaries

based on Highlights by Watson/ICRC
 based on Summary by Teshima/ICRC
 Today's summary for ICRR

Summary of Auger Highlights: (A. WATSON)

Auger-South more than 80% complete

<u>More events > 10 EeV than from AGASA or HiRes</u> (close to, or more than their total) <u>AND with superior angular and energy resolution</u>

Arrival Directions:

No evidence of point sources

but relatively few events at the very highest
 energies: Auger is just starting to see something

 <u>Spectrum</u>: ankle and steepening confirmed
 with model-independent measurement and analyses at 4.5 x 10¹⁸ - 3.55 x 10¹⁹ eV

ICRC Summary - Teshima rapporteur

Energy Spectrum of UHECRs

- HiRes and Auger saw the steepening of the spectrum above 4x10¹⁹eV with 5 sigma and 6 sigma
- GZK cutoff? (or else?)

• Chemical compostion of UHECRs - in conflict

- Auger Xmax suggests mixed composition
- HiRes claimed proton dominance above10¹⁸eV

Anisotropies

- No galactic center excess was found with Auger around 10¹⁸eV
- HiRes: deficit in the direction of anti-galactic center is reported.
- Small scale anisotropy was not found with Auger
 - The effect of galactic magnetic field must be considered → Higher E
- Hint of medium scale anisotropy with Auger
- World data also shows medium scale anisotropy
 - Related to the large scale structure?

Many open questions that arose in 2007

Energy scale problem

- 1.2~1.5 factor difference between Auger and other experiments
- FD energy (FY) $\leftarrow \rightarrow$ SD energy (MC-Calibration energy)

What is ankle?

- Pair creation dip → V.Berezinsky; Beautiful results (requires proton dominance)
- or Transition from galactic to extragalactic

• Chemical composition at UHE (EHE: not known for Super-GZK)

- A. Proton dominance ? → it supports pair creation dip hypothesis
- B. Mixed composition \rightarrow photodisintegration energy (Eth ~increase with A)
 - → small elongation ratio D10 → Auger Xmax?

Break in energy spectrum at 4x10¹⁹eV

- GZK Cutoff? Too darly?
- Acceleration limit? Too universal?
- Drop off of lighter elements?

Medium scale anisotropy

- Relating with large scale structure?
- Deflected images of point sources (North-South asymmetry)

Today's critiques - and <u>Recommendations (1)</u>

- 1. Steeper Spectrum > 4 x 10¹⁹ eV by Hi-Res/Auger
 - Unclear, inconsistent, if it is GZK profile of protons
 - (i) Need overwhelming statistics when discussing the steepening
 - (ii) Unsettlingly obscure Hi-Res aperture it can easily mimic steepening if p-GZK,nearby source pointing should be stronger
 - (iii) Inconsistent (Auger) for GZK with the mixed composition data*

(if acceleration limit, it cannot be *a priori* universal at all the sources, either)

2. Source pointing - Auger < 10²⁰eV is "<u>naturally</u>" negative

- but not qualified to deny Auger/Hi-Res/Yakutsuk data
- (i) <u>High Galactic magnetic field</u> in the southern sky eraces signals
- (ii) Known that there are much fewer sources (BL-lac) in the South
- * Doubt exists that Auger under-estimated energy (by FD)

Today's critiques - and Recommendations (2)

- 1. More e/ μ separating observations (Auger/TA) are desired
 - and possibly, with large-scale in-fill+
 - a. Clarify the long-lasting big puzzle of anomalous elongation rate (well known in Japan since Norikura/Miyake 1979 ICHEP and BASJE/Suga-Mizumoto:).

b. Allow some studies of super-LHC physics in the energy-frontier.

- 2. Make ~10⁶ L Highest-energy astronomy/astrophysics experiments (e.g., JEM-EUSO, Super-EUSO, Auger N+)
- 3. Find overwhelming means to really detect neutrinos (no more upper-bounds as a manifest of incapability)
- 4. R&Ds for Radio and new photo-sensors

Thanks

Improve the FD accuracy!

- Sampling of Previous Results: Kakimoto et al., Nagano et al., and T461 (FLASH test run).
- Ratio of fit to (Kakimoto, Nagano, and T461) to fit to Kakimoto
 - $= 1.00 \pm 0.06$
- FLASH result will be shown at the air fluorescence conference at El Escorial in Sept.

Previous Measurement of the Absolute Fluorescence Yield

Auger: Attenuation curve and CIC

Attenuation curve parameterisation

$$S(1000) = S_{38^{\circ}} (1 + a x + b x^2)$$

= $S_{38^{\circ}} CIC(\theta)$

x =
$$\cos^2 \theta - \cos^2 38^\circ$$

a = 0.96 ± 0.06

b = -1.21 ± 0.27

S_{38°} may be regarded as the signal the shower would have produced if it had arrived at 38°

i.e. $S_{38^{\circ}} = S(1000)/CIC(\theta)$ $\sigma^2_{S38^{\circ}} = \sigma^2_{S38^{\circ}}(CIC) + \sigma^2_{\cos\theta} + \sigma^2_{S(1000)}$

But what does this all mean?

Is the ankle marking a galactic/extra-galactic change?

Have we seen the GZK effect? Is it a 'bump' from a more local effect? Are the accelerators just 'tired' in part? What can we deduce from propagation models if there is no spatial annisotropy?

Deducing the MASS is troubling: mixed at highest energy?

Larger σ and/or more muons (EPOS?) Certainly not expected by many, except BASJE/Norikura – do hadronic models need some modification?

Could it help to reconcile AGASA, HiRes and Auger at the higher energies?