

飛翔体観測による 高エネルギー宇宙線加速天体の研究

研究代表者: 鳥居 祥二(早大 理工研)

田村忠久(神奈川大工学部)

平成26年度 宇宙線研究所共同利用研究成果発表会

2014.12.13

共同利用研究概要(2014)

- 研究内容
- CALET性能最適化のためのシミュレーション計算
- 発表概要
- CALETプロジェクト
- 軌道上観測シミュレーション計算
- Waseda CALET Operations Center (WCOC)
- まとめ今後の予定
- 予算 旅費 150千円
 支出(予定)内容: 研究打ち合わせ、小研究会
- 共同利用 計算機(シミュレーション計算)

参加研究者及び研究補助 早稲田大学 笠原克昌、小澤俊介、浅岡陽一、Motz H Martin、植山良貴、仁井田多絵、小林慎太郎、 齋藤優、塚原一樹、下村健太、木村寿利、堀内陽介、山村咲弥、力石和樹、岡田侑子、佐藤文佳、 田中正文、土屋恵里子、大和啓一、神尾泰樹 宇宙線研究所 寺澤敏夫、赤池陽水、瀧田正人 神奈川大学 田村忠久 JAXA/ISAS 福家英之 JAXA/SEUC 清水雄輝 横浜国立大学柴田植雄、片寄祐作 芝浦工業大学 吉田健二 立命館大学 森正樹 弘前大学 市村雅一、倉又秀一 茨城大学 柳田昭平 茨城高専 三宅晶子

CALETによる科学観測

カロリメータ (CALET/CAL)

- 電子: 1 GeV 20,000 GeV
- ガンマ線: 10 GeV 10,000 GeV (ガンマ線バースト: > 1 GeV)
- 陽子•原子核: 数10GeV – 1,000 TeV
- 超重核:

Rigidity Cut 以上のエネルギー

ガンマ線バーストモニタ (CGBM)

- 軟ガンマ線: 30 keV 30 MeV
- 硬X線 : 3keV 3 MeV

観測目的	観測対象
于田線虹傍加速線の向定	Tev領域における電子エイルキースペクトル
暗黒物質の探索	電子・ガンマ線の100 GeV−10 TeV領域におけるスペクトルの"異常"
宇宙線の起源と加速機構の解明	電子及び陽子・原子核の精密なエネルギースペクトル、超重核のフラックス
宇宙線銀河内伝播過程の解明	二次核/一次核(B/C)比のエネルギー依存性
太陽磁気圏の研究	低エネルギー(<10GeV)電子フラックスの長・短期変動
ガンマ線バーストの研究	3 keV - 30 MeV領域でのX線・ガンマ線のバースト現象

電子·陽電子観測

GeV-TeV領域におけるCALETによる電子観測予測

暗黒物質起源(LSP崩壊モデル)

□ TeV領域:近傍加速源(R<1kpc, T<10⁴year)の検出 候補となる超新星残骸:Vela, Cygnus Loop, Monogem

□ 10-1000 GeV:衝撃波加速+伝播過程の定量化 特に数100GeV領域におけるパルサーor暗黒物質による寄与

□ 1-10 GeV:太陽変調の観測
 短期:フォーブッシュ減少 長期:太陽活動

 これまでの観測結果と矛盾しないLSP (Lightest Super Symmetric Particle) の崩壊モデルから期待される全電子 スペクトルの検出がTeV領域で可能

□ 異方性の測定との併用により、天体 起源か暗黒物質起源かを識別

高エネルギーガンマ線観測

CALETのガンマ線観測性能

エネルギー領域	4 GeV-10 TeV		
有効面積	600 cm² (10GeV)		
視野角	2 sr		
幾何学的因子	1100 cm²sr		
エネルギー分解能	< 3% (> 10 GeV)		
角度分解能	< 0.35 ° (> 10 GeV)		
ポインティング精度	6'		
点源に対する感度	8 x 10 ⁻⁹ cm ⁻² s ⁻¹		
観測期間(目標)	5 years		

1年間の銀河拡散成分の観測予測 ~25,000 photons

							-			_
0	3.1	6.2	9.3	12	16	19	22	25	28	31
	*) 銀	河系统	水拡散	成分(EGB)	は~7.	000 p	hoton	s/vr	
	F	onmi/	レムエた	ポラス	5 ToV4	いていていていていていていていています。	F での年	日间大学	。, /· 司能	
	1.0	ermi/		たたっ	DIEVT	現場よ		ル/川/J、	PJ FIL	

最近発表された暗黒物質起源を示唆する Fermi/LATによる銀河中心からのガンマ線

Kaluza-Klein dark matterからのガンマ線信号予測

エネルギー分解能が良くないとライン構造は特徴的に見えない

Dec. 13, 2014

ICRR共同利用発表会

CALET ペイロード

CAL (CHD/IMC/TASC)

CGBM

- JEM標準ペイロード
 1850L×800W×1000H
- ・重量 650 kg(最大)
- ·消費電力 650 W(標準)
- •通信速度:

中速系 600 kbps/低速系 35 kbps

- ・HTV 5号機で打上げ予定
- ・JEM-EF Port #9 に取り付け
- · 観測期間2年以上(目標5年間)

Dec. 13, 2014

CALET 主検出装置 CAL (CHD + IMC + TASC)

視野角	45°	(天頂角)

- ・幾何学因子 SΩ = 0.12 m² sr (電子)
 - **CHD** Charge Detector

IMC Imaging Calorimeter

TASC Total Absorption Calorimeter

	機能	検出器	読出し
CHD	電荷測定 (Z=1-40)	プラスチックシンチレータ(1本:32×10×450mm ³) 14本×1層(X,Y)=28本	PMT + CSA
IMC	入射角、 粒子判定	シンチファイバー(1本:1mm ² ×448mm) 448 本×8 層(X,Y) = 7168 本 タングステン 0.2X ₀ ×5枚 + 1X ₀ ×2枚 = 3X ₀ (0.11λ _I)	64-anode PMT + ASIC
TASC	エネルギー測 定、粒子判定	PWO(1本:19mm×20mm×326mm) 16本×6層(X,Y)=192本 全層合計 27X ₀ (1.35λ _I)	PMT + CSA (Top), APD/PD + CSA

CALET/CAL シャワーイメージング (シミュレーション)

Proton rejection power of 10⁵ can be achieved with IMC and TASC shower imaging capability.

* Charge of incident particle is determined to σ_z =0.15-0.3 with the CHD.

Dec. 13, 2014

ICRR共同利用発表会

CALET 期待される性能(シミュレーション)

CERN Beam Test using the Structure & Thermal Model (STM)

Charge Detector: CHD

Imaging Calorimeter: IMC

Total Absorption Calorimeter: TASC

Dec. 15, 2014

Beam Test Model at CERN SPS H8 Beam Line

ICRR共同利用発表会

Beam Test Results

データダウンリンクとCALETデータ解析

ICRR共同利用発表会

QL Example: Event Display [temporary version]

General Alerts of Transients

Dec. 13, 2014

ICRR共同利用発表会

まとめと予定

- CALETはTeV領域の電子・ガンマ線観測により近傍加速源と暗黒物質の探索を行う ほか、陽子・原子核の観測を1000TeV領域まで実施して宇宙線の加速・伝播機構の 解明を行う。さらに、太陽変動やガンマ線バーストのモニター観測を実施する。
- CALETは、これまでの気球実験(BETS,PPB-BETS)の経験をもとに開発されており、 日本で初めての宇宙空間における高エネルギー宇宙線観測プロジェクトである。
- CALET は、JAXA有人宇宙ミッション本部宇宙環境利用センターと早稲田大学の 共同研究によるプロジェクトであり、神奈川大学を始めとする国内研究機関に加えて、 JAXAが米国NASA及びイタリアASIと協定を結んで、米伊の研究機関が参加して 実施している。
- CALETは、搭載装置(PFM)の製作を終了して、つくば宇宙センターにおいて総合システム 試験(音響、熱真空、EMC、データ送受信)を実施中である。システム試験完了後は、種子 島宇宙センターへの輸送後、HTVに搭載してH-IBロケットで打ち上げる予定。