スーパーカミオカンデ (太陽ニュートリノ・超新星ニュートリノ)

宇宙線研究所共同利用研究成果発表会 2014年12月12日 岡山大学

目次

√太陽ニュートリノ観測

- フラックス/昼夜変動/エネルギースペクトル

- ニュートリノ振動解析

✔超新星ニュートリノ観測

- 超新星爆発ニュートリノ
- 超新星背景ニュートリノ探索
 - ガドリニウムテスト実験EGADSの現状

太陽ニュートリノ

スーパーカミオカンデ(SK)

50000トン水チェレンコフ検出器	Ka	imioka n	nine			o Asobikawa B ^S apparo
		~3k	(2700 n	1km ~2km nwe)	See of Upon or Consult Consult Consult Consult Consult See of Upon Consult See of Upon See of Upon Consult See of Upon See of Upon	Akita Marioka Ine Houshu Vamagata Senda Nigata Juaki Koryoma Juaki Koryoma Juaki Koryoma Juaki Koryoma Juaki Koryoma Juaki Koryoma Juaki Koryoma Juaki Koryoma Juaki
	(For Solar neutrino analysis)					
Cherenkov light	Phase	Period	Livetime (days)	Fiducial vol. (kton)	# of PMTs	Energy thr.(MeV)
E E	SK-I	1996.4 ~ 2001.7	1496	22.5	11146 (40%)	4.5
Charged particle	SK-II	2002.10 ~ 2005.10	791		5182 (20%)	6.5
	SK-III	2006.7 ~ 2008.8	548	22.5 (>5.5MeV) 13.3 (<5.5MeV)	11129	4.5
	SK-IV	2008.9 ~	1669	22.5 (>5.5MeV) 13.3 (4.5 <e<5.5) 8.8 (<4.5MeV)</e<5.5) 	(40%)	3.5
39.3 m Keutrino total 4504 days (coverage) 2014年12月12日 Neutrino 宇宙線研共同利用成果発表会 (coverage)						(Kinetic energy) 4

SKでの太陽ニュートリノ観測

2014年12月12日

宇宙線研共同利用成果発表会

Physics motivation

PRL 112, 091805 (2014)

PHYSICAL REVIEW LETTERS

week ending 7 MARCH 2014

Ş

First Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation

A. Renshaw,^{7,†} K. Abe,^{1,29} Y. Hayato,^{1,29} K. Iyogi,¹ J. Kameda,^{1,29} Y. Kishimoto,^{1,29} M. Miura,^{1,29} S. Moriyama,^{1,29} M. Nakahata,^{1,29} Y. Nakano,¹ S. Nakayama,^{1,29} H. Sekiya,^{1,29} M. Shiozawa,^{1,29} Y. Suzuki,^{1,29} A. Takeda,^{1,29} Y. Takenaga,¹ T. Tomura,^{1,29} K. Ueno,¹ T. Yokozawa,¹ R. A. Wendell,^{1,29} T. Irvine,² T. Kajita,^{2,29} K. Kaneyuki,^{2,29,*} K. P. Lee,² Y. Nishimura,² K. Okumura,^{2,29} T. McLachlan,² L. Labarga,³ S. Berkman,⁴ H. A. Tanaka,^{4,31} S. Tobayama,⁴ E. Kearns,^{5,29} J. L. Raaf,⁵ J. L. Stone,^{5,29} L. R. Sulak,⁵ M. Goldhabar,^{6,*} K. Bays,⁷ G. Carminati,⁷ W. R. Kropp,⁷ S. Mine,⁷ M. B. Smy,^{7,29} H. W. Sobel,^{7,29} K. S. Ganezer,⁸ J. Hill,⁸ W. E. Keig,⁸ N. Hong,⁹ J. Y. Kim,⁹ I. T. Lim,⁹ T. Akiri,¹⁰ A. Himmel,¹⁰ K. Scholberg,^{10,29} C. W. Walter,^{10,29} T. Wongjirad,¹⁰ T. Ishizuka,¹¹ S. Tasaka,¹² J. S. Jang,¹³ J. G. Learned,¹⁴ S. Matsuno,¹⁴ S. N. Smith,¹⁴ T. Hasegawa,¹⁵ T. Ishida,¹⁵ T. Ishiida,¹⁵ T. Kobayashi,¹⁵ T. Nakadaira,¹⁵ K. Nakamura,^{15,29} Y. Oyama,¹⁵ K. Sakashita,¹⁵ T. Sekiguchi,¹⁵ T. Tsukamoto,¹⁵ A. T. Suzuki,¹⁶ Y. Takeuchi,¹⁶ C. Bronner,¹⁷ S. Hirota,¹⁷ K. Huang,¹⁷ K. Ieki,¹⁷ M. Ikeda,¹⁷ T. Kikawa,¹⁷ A. Minamino,¹⁷ T. Nakaya,^{17,29} K. Suzuki,¹⁷ S. Takahashi,¹⁷ Y. Fukuda,¹⁸ K. Choi,¹⁹ Y. Itow,¹⁹ G. Mitsuka,¹⁹ P. Mijakowski,³⁵ J. Hignjht,²⁰ J. Imber,²⁰ C. K. Jung,²⁰ C. Yanagisawa,²⁰ H. Ishino,²¹ A. Kibayashi,²¹ Y. Koshio,²¹ T. Mori,²¹ M. Sakuda,²¹ T. Yano,²¹ Y. Kuno,²² R. Tacik,^{23,32} S. B. Kim,²⁴ H. Okazawa,²⁵ Y. Choi,²⁶ K. Nishijima,²⁷ M. Koshiba,²⁸ Y. Totsuka,³² M. J. Wilking,³² S. Chen,³³ Y. Zhang,³³ and R. J. Wilkes³⁴

(The Super-Kamiokande Collaboration)

Neutrino 2014

太陽ニュートリノフラックス

3.5MeV解析閾値の実現

フラックスの昼夜変動

11

フラックスの昼夜変動

	Amplit	Straight calc.	
	$\Delta m^2_{21} = 4.84 \times 10^{-5} eV^2$	$\Delta m^2_{21} = 7.50 \times 10^{-5} eV^2$	(D-N)/((D+N)/2)
SK-I	-2.0±1.8±1.0%	-1.9±1.7±1.0%	-2.1±2.0±1.3%
SK-II	-4.4±3.8±1.0%	-4.4±3.6±1.0%	-5.5±4.2±3.7%
SK-III	-4.2±2.7±0.7%	-3.8±2.6±0.7%	-5.9±3.2±1.3%
SK-IV	-3.6±1.6±0.6%	-3.3±1.5±0.6%	-4.9±1.8±1.4%
combined	-3.3±1.0±0.5%	-3.1±1.0±0.5%	-4.1±1.2±0.8%
non-zero significance	3.0 <i>σ</i>	2.8σ	2.8σ

 $(\sin^2\theta_{12}=0.311, \sin^2\theta_{13}=0.025)$

ニュートリノ振動の物質効果 (地球内部の物質)を初めて 直接的に捉えた。

エネルギースペクトル

エネルギースペクトル

14

νeの生存確率

宇宙線研共同利用成果発表会

νeの生存確率

ニュートリノ振動解析

SKのみ

全太陽ニュートリノデータ

超新星ニュートリノ

超新星爆発ニュートリノ

No detection

超新星爆発ニュートリノアラーム

昨年の成果発表会(池田)

- アラームメールがエキス パートに送られる
- シフトはDAQや作業の現状
 を確認
- シフトは確認事項をエキス パートに連絡
- アラームから15分以内に
 エキスパート会議
 - SNであることを確認
- コラボレータに報告

• 世界に情報を発信

発生後1時間以内に情報発信可能

安定して稼働中

超新星背景ニュートリノ探索

2014年12月12日

GADZOOKS!

(Gadolinium Antineutrino Detector Zealously Outperforming Old Kamiokande Super!)

Gdテスト実証実験 EGADS

(Evaluating Gadolinium's Action on Detector Systems)

✓ Gd溶解水の透過率
✓ Gd溶解水の純化
✓ Gdと純水の混合
✓ Gdの検出器への影響
✓ 環境中性子の影響
等を調べる。

EGADS実験の現状

昨年の成果発表会(池田)

現状と予定

- 現在は、純水
 透過率測定
 - 検出器キャリブレーション
- 1月中旬から2月にかけ
 てガドリニウム導入。
 - 透過率変化
 - 中性子捕獲率
 - などなど
- •5月には結果をまとめる。

•純水においてもGd溶液においても 予測以上の透過率低下を観測 タンク内調査によりブラックシート 固定用のワイヤに錆を発見 ✔ この材料は亜鉛メッキした鉄の ワイヤだと後に判明。(業者から はSUSとして購入) ✓ SK検出器内部には使用されてい

ない部材

• ワイヤを取り除き、検出器内の洗浄 を行なった。

EGADS 実験の 現状

✓ 取替・洗浄作業(~9月) ✓ 純水で循環(10-11月)透過率は安定 ✓ Gd (最終目標の約1/10)を導入(11月27日)

今後は徐々にGdを増やしていき

透過率変化や中性子捕獲率の見積などを進めて行く

中性子線源によるGdア測定

まとめ

- 太陽ニュートリノ観測
 - ✓ 約4500日のデータ解析を行なった。特にSK-IV ではバックグ ラウンドの削減により3.5MeVエネルギー閾値を達成。
 - √ 有意な時期変動は見られない。
 - ✓ 昼夜のフラックスの違いを約3.0シグマレベルで観測した。 ニュートリノ振動における地球物質効果を初めて観測。
 - ✔ 有意なスペクトルの歪みは見られない。
 - ✓ ニュートリノ振動解析ではΔm²において KamLAND と太陽 ニュートリノの最適解では2シグマ程度の離れが見られる。

まとめ

- 超新星ニュートリノ観測
 - ✓ 超新星爆発ニュートリノは観測されていない。超新星アラームは安定して稼働中。
 - ✓ 将来、超新星背景ニュートリノ探索計画 GADZOOKS!に向けた実証実験 EGADSを進めている。
 - 改修作業を行なった。Gdもすでに導入済み。今後、実証 実験を進めていく。
 - 中性子捕獲によるガンマ線スペクトル較正データはシ ミュレーションを再現している。

バックアップ

SK-IVにおける改善

水システムの改良によりバックグランドを 低くキープすることに成功した

系統誤差の削減

Source	SK-IV flux	SK-III flux	
Source	(3.5-19.5MeV)	(4.5-19.5MeV)	
energy scale	+1.14, -1.16%	±1.4%	
energy resolution	+0.14, -0.08%	±0.2%	
B8 spectrum	+0.33, -0.37%	±0.2%	
trigger efficiency	±0.1%	±0.5%	
angular resolution	+0.32, -0.25%	±0.67%	
vertex shift	±0.18%	±0.54%	
BG event cut	±0.36%	±0.4%	
hit pattern cut	±0.27%	±0.25%	
another vertex cut	removed	±0.45%	
spallation cut	±0.2%	±0.2%	
gamma cut	±0.26%	±0.25%	
cluster hit cut	+0.45, -0.44%	±0.5%	
BG shape	±0.1%	±0.1%	
signal extraction	±0.7%	±0.7%	
cross section	±0.5%	±0.5%	
Total	1.7 %	2.1 %	

2014年12月12日

宇宙線研共同利用成果発表会

(+3.5, -3.2 % for SK-I)

SKとSNO

昼夜変動の Δm²21 依存性

SK-I/II/III/IV Combine Day/Night Asymmetry

Data set for global solar analysis

The most up-to-date data are used

- ✓ SK:
 - SK-I 1496 days, spectrum 4.5-19.5 MeV(kin.)+D/N:Ekin>4.5 MeV
 - SK-II 791 days, spectrum 6.5-19.5 MeV(kin.)+D/N: Ekin>7.0 MeV
 - SK-III 548 days, spectrum 4.0-19.5 MeV(kin.)+D/N: Ekin>4.5 MeV
 - SK-IV 1669 days, spectrum 3.5-19.5 MeV(kin.)+D/N: Ekin>4.5 MeV
- ✓ SNO:
 - Parameterized analysis (c₀, c₁, c₂, a₀, a₁) of all SNO phased. (PRC88, 025501 (2013))

(Note: the same method is applied to both SK and SNO with a₀ and a₁ to LMA expectation.)

- ✓ Radiochemical: CI, Ga
 - Ga rate: 66.1±3.1 SNU (All Ga global) (PRC80, 015807 (2009))
 - CI rate: 2.56±0.23 SNU(Astrophys. J.496, 505 (1998))
- ✓ Borexino: Latest ⁷Be flux (PRL 107, 141302 (2011))
- ✓ KamLAND reactor : Latest (3-flavor) analysis (PRD88, 3, 033001 (2013))
- ⁸B spectrum: Winter 2006 (PRC73, 73, 025503 (2006))
- ⁸B and hep flux free, if not mentioned.