Knee領域および最高エネルギー領域での 宇宙線反応の実験的研究 (LHCf 実験)

増田公明(名大STE研) LHCf collaboration 東大宇宙線研 福島正己 他

2013年12月21日 平成25年度 宇宙線研究所 共同利用研究成果発表会

1

共同利用研究課題

- LHC加速器の 900GeV ~ 14 TeV (ビーム当 たり 450 GeV ~ 7 TeV) 陽子-陽子衝突に よって生成される最前方中性粒子を測定し、宇 宙線反応に寄与するハドロン相互作用モデルの 検証を行う(LHCf 実験)。
- ・陽子-原子核衝突でもデータを取得し,宇宙線 と大気の反応の理解に近づく。
- モデルの違いによる10¹⁷~10²⁰eVの宇宙線観測
 データの解釈に関して、TAグループ等と検討及び議論を行う。

平成25年度共同利用予算

- 査定額 旅費 150千円(名古屋一柏)
 - 宇宙線研でTAグループ等と種々の議論を行う
 - 1-3月に使用予定
- 共同利用計算機の使用
 - MCシミュレーション
 - データ解析

名大STE研

村木綏*, 伊藤好孝, <u>増田公明</u>, 松原豊, 塔隆志**, 川出健太郎, 牧野友哉, 松林恵理, 周啓東, 杉浦佑樹 名大理 毛受弘彰 名大KMI 櫻井信之 神奈川大学工 田村忠久 早稲田大学理工総研 鳥居祥二, 笠原克昌, 鈴木拓也 芝浦工大システム工 吉田健二

JAXA 清水雄輝

* spokesperson, ** technical coordinator

LHCf collaboration (6ヶ国, 34名)

- (Univ. di Firenze)
- O. Adriani, L. Bonechi, M. Bongi, G.Castellini,
- R. D'Alessandro, M. Grandi, G. Mitsuka, P. Papini,
- S. Ricciarini
- (Univ. di Catania) A. Tricomi

Spain

(Centro Mixto CSIC-UVEG, Valencia) D.A. Faus, J. Velasco

- France (Ecole-Polytechnique, Paris) M. Haguenauer
- USA (UC Berkeley) W.C. Turner
- Switzerland (CERN) A.-L. Perrot, D.Pfeiffer

Physics Motivation

LHCf 実験の概要

- 加速器実験でハドロン相互作用モデルを検証する
- CERNの最高エネルギー加速器 LHC(Large Hadron Collider)で、450GeV×450GeV ~ 7TeV×7TeV陽子ー陽子衝突実験を行い、最前 方放出中性粒子を測定する
- 陽子-原子核衝突実験を行なう
- 実験室系4×10¹⁴eV~1×10¹⁷eVの宇宙線反応と 等価
- その結果から10¹⁷eVまでのハドロン相互作用モデ ルを検証し、さらにこれより高い超高エネルギー宇 宙線観測データの正しい解釈を行う

LHCf Detectors

2つの検出器はそれぞれ2つの カロリーメータータワーを持つ Arm1 20mm[◇], 40mm[◇] Arm2 25mm[□], 32mm[□] 2γイベント⇒π⁰再構成

- Imaging Sampling Calorimeter
 W 44 r.1, 1.6λ_I
- Plastic scintillator \times 16 layers
- Position Detector
- Scifi × 4 (Arm1) $\sigma_x = 0.17$ mm
- Silicon Tracker $\times 4$ (Arm2)

 $\sigma_x = 0.05 mm$

Energy Resolution

<5% (gamma), 30% (hadron)

Phase- I 測定

年月	項目
2009年12月	√s=900GeV陽子-陽子衝突の測定 28時間、約6,600 shower events の取得 @Luminosity ~10 ²⁶ cm ⁻² s ⁻¹
2010年2月 ~7月	√s=7TeV陽子-陽子衝突の測定 150時間、約4x10 ⁸ shower events, 10 ⁶ π ⁰ events √s=900GeV陽子-陽子衝突の測定 15時間、約10 ⁵ shower events の取得 @Luminosity ~10 ²⁷ cm ⁻² s ⁻¹
2010年7月	Phase- I 測定完了,ビームラインより検出器撤去
2010年10月	Arm1/2 事後較正(SPS)
2011年 ~	データ解析 検出器 upgrade
2013年1月 ~2月	√s _{NN} =5.02TeV陽子(4TeV)-鉛(1.58TeV/n)衝突の測定 (Arm2)

解析, 論文発表の状況

Year	Correspond- ing author	Journal	Title	
2011 Aug	T. Sako	PLB	Measurement of zero degree single photon energy spectra for $\sqrt{s} = 7$ TeV proton-proton collisions at LHC	
2011 Sep	K. Kawade	JINST	Study of radiation hardness of Gd ₂ SiO ₅ scintillator for heavy ion beam	
2012 Jan	K. Taki	JINST	Luminosity determination in $\sqrt{s} = 7$ TeV proton collisions using the LHCf Front Counter at LHC	
2012 Apr	T. Mase	NIM A	Calibration of LHCf calorimeters for photon measurement by CERN SPS test beam	
2012 Aug	Y. Itow	PLB	Measurement of zero degree inclusive photon energy spectra for $\sqrt{s} = 900$ GeV proton-proton collisions at LHC	
2012 Nov	G. Mitsuka	PRD	Measurement of forward neutral pion transverse momentum spectra for $\sqrt{s} = 7$ TeV proton-proton collisions at LHC	

解析中: 7 TeV p-p衝突 中性子スペクトル

宇宙線観測への影響

5TeV p-Pb衝突 光子スペクトル

年月	項目
2014年2月	Upgrade Detector: HIMAC pre-calibration
2014年 8 or 10月	Upgrade detectors: SPS performance test & calibration
2015年前半	√s=13TeV陽子-陽子衝突の測定
2016年?	RHIC forward p-N衝突?
20??年	LHC p-O衝突?

主な論文/解析のトピックス

- 7TeV photon:
 - どのモデルもデータを再現できない
 - データの系統誤差を小さくする必要
- ・900GeVと7TeVの比較
 - X_F分布の形状のエネルギー依存性は小さい
 - ファインマン・スケーリングを示唆
- 7TeV π⁰ スペクトル
 - 全体に合うモデルはない。
- 7TeV 中性子
- P-Pb 解析(イタリア)

粒子弁別 PID for neutrons

- photon成分とhadron成分の弁 別を効率よく行いたい
 - photon → 浅いシャワー
 - hadron → 深いシャワー
- L20% (L90%)を総シャワーの20% (90%)を含む深さとして定義する (右記)
- L20%とL90%を用いた2次元カットによるPIDを採用
- 最適な弁別基準としてL_{2D}を導入
 L_{2D} = L_{90%} 1/4*L_{20%}

Energy spectra for neutrons

- r<6mm
- Arm1、Arm2、各相互作用モデルの比較
- Arm1とArm2の解析は独立に行っている
- どのモデルも実験データを完璧には再現しない

検出器アップグレード

√s =14TeV p-p衝突測定では検出器に高い放射線耐性が必要
 2010年√s =7TeV測定
 10倍 √s =14TeV測定
 被曝線量 約200Gy
 被曝線量(予想)約200Gy

検出器の基本構成はほぼそのままで,放射線耐性の高いものに入れ替える

プラスチックシンチレータ(Eljen Technology EJ260) シンチレーティングファイバー(KURARAY SCSF-38) シリコン検出器

	EJ-260	GSO
放射線耐性(Gy)	100	106
密度(g/cm ³)	1.02	6.71
放射長(cm)	14.2	1.38
発光減衰時間(ns)	9.6	30-60
発光強度(NaI=100)	19.6	20

まとめ

- LHCf 実験は, 空気シャワーシミュレーションに用いられるハドロン相 <u>互作用モデルの検証を目的として</u>, LHC加速器最前方散乱中性粒子 (γ, n,π⁰)を測定
- 2010年に√s=900GeVと7TeV陽子-陽子衝突の測定,2011年以降は その結果の解析を行い、√s=7TeV陽子-陽子衝突でのガンマ線エネル ギースペクトルの結果をpublish、さらに900GeVデータの解析やπ^o解 析の結果をpublish
- 系統誤差の改善のためにビームテストデータの解析を進めている
- 2013年にp-Pb衝突実験。解析中。
- 2015年に√s=13TeV 陽子-陽子衝突での測定を予定。これに向けて放射線耐性の高いGSOシンチレータを用いた検出器にアップグレード中。
 基礎特性試験は完了し、実機製作を進めている
- 共同利用
 - 今後も計算機使用と観測グループ,モデル開発者との検討会を継続

