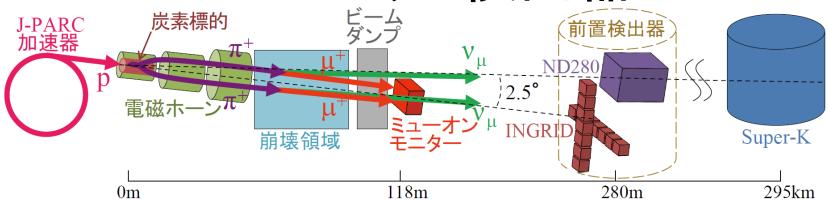

T2K実験

南野彰宏(京都大学) 他 T2Kコラボレーション

平成25年度宇宙線研究所共同利用成果発表会 2013年12月20日

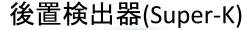
T2K実験

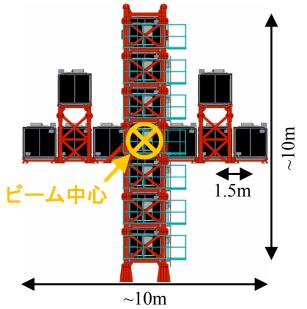
- J-PARCでほぼ純粋なνμビームを生成。
- 生成点直後の前置検出器と295km離れた スーパーカミオカンデでニュートリノを観測。

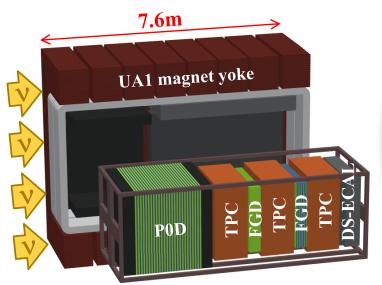

ニュートリノ振動の精密測定。

T2K実験における振動モード

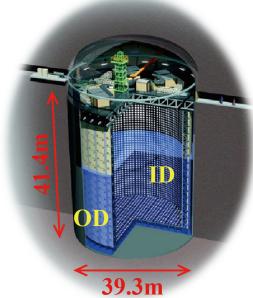
- $1. \nu_{\mu} \rightarrow \nu_{e} (\nu_{e} 出現モード)$
- 2. ν_μ→ν_μ以外 (ν_μ消失モード)




ニュートリノ検出器

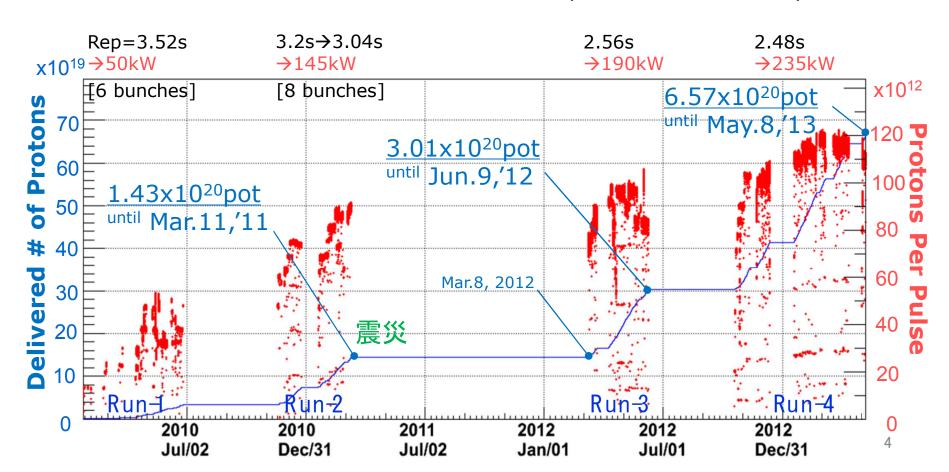

on-axis前置検出器(INGRID)

off-axis前置検出器(ND280)



- ・16台の同一モジュール
- √ビーム方向をモニター

- 複合型検出器(FGD, TPCなど)
- 振動前のv flux/spectrumを測定



• 50kt水チェレンコフ検出器

3

データ

- 6.57×10²⁰ POT (Proton On Target)のデータを取得。 →T2K実験の目標統計の8%
- 最高235kWでのビーム運転を達成。(設計値は750kW)

ニュートリノ振動解析の流れ

vフラックス予測

- ハドロン生成実験データ (特にNA61@CERN)
- ビームモニター測定
- Geant3ベースのシミュレータ

ND280の測定

• μの運動量と角度分布

<u>∨反応断面積</u>

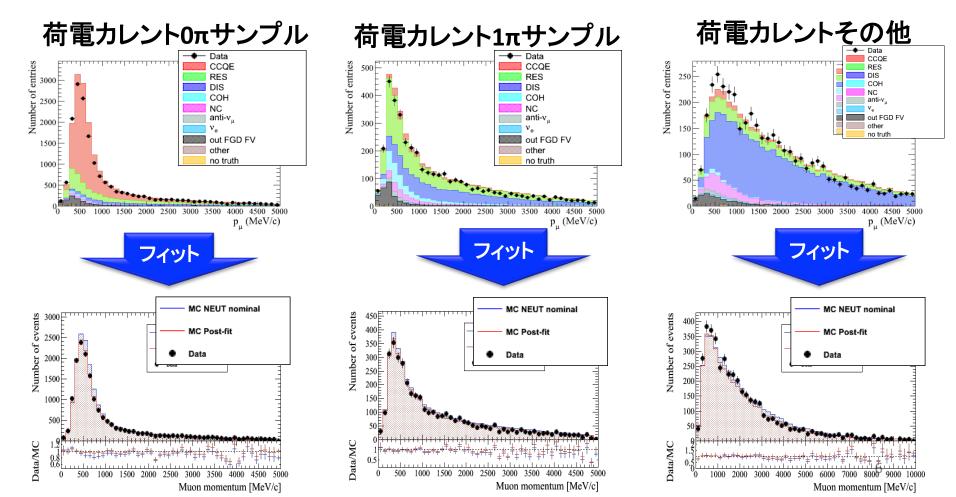
MiniBooNE等の実験データでモデル構築&誤差見積り(シミュレータ=NEUT)

ND280フィット

SKとND280で相関が強い systematicパラメータの誤差を削減

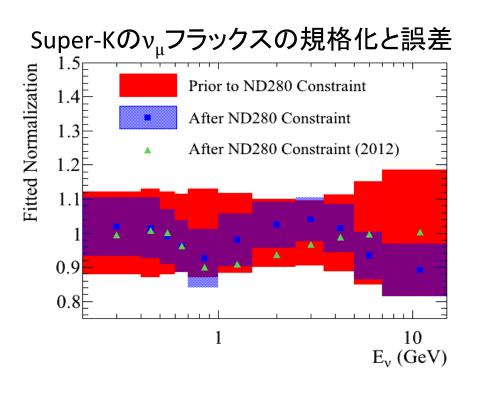
SK予測

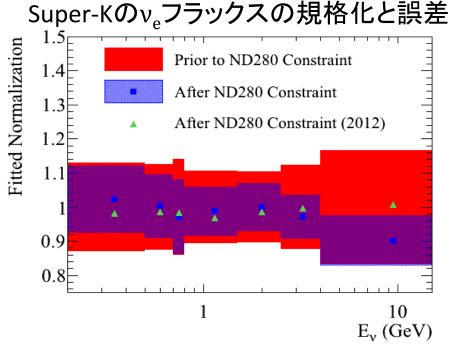
ND280フィット後のsystematicパラメータとその誤差



SK測定

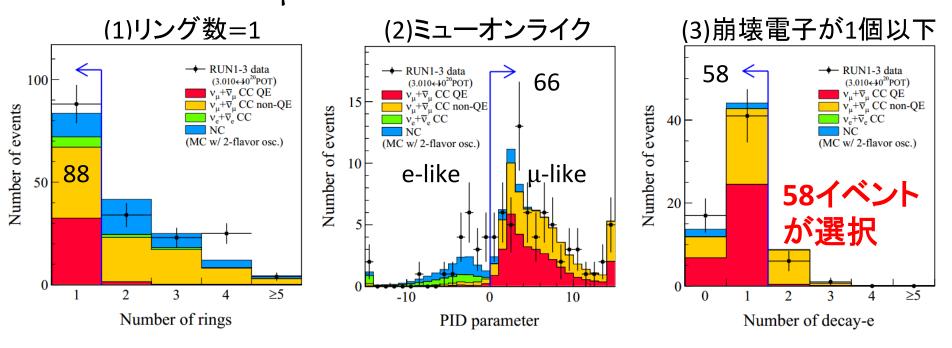
イベント数とエネルギースペクトラム


ND280の測定とフィット


- 各ニュートリノ相互作用を高純度化した3サンプルに分類。
- ミューオンの運動量、角度分布をフィット。
- SKとND280で相関の強いsystematicパラメータとその誤差を導出。

ND280フィットによる誤差の削減

vフラックスとv反応断面積のsystematicパラメータのうち、 Super-KとND280で相関が強いものの誤差を削減。



νμ消失モードの解析結果

Phys. Rev. Lett. 111, 211803 (2013)

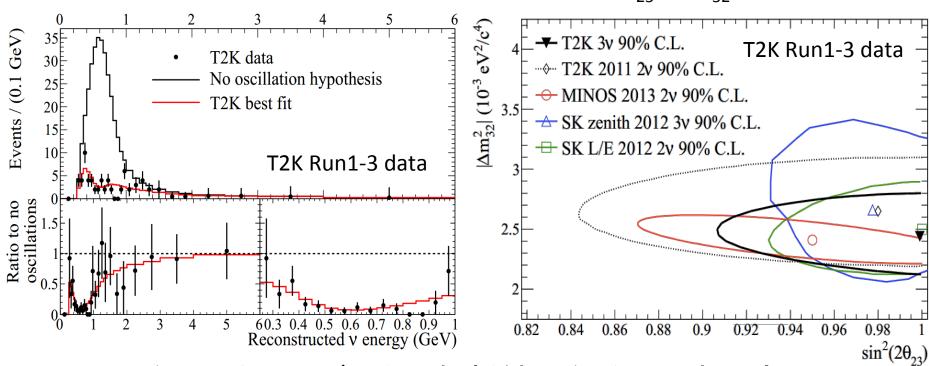
2012年6月までのデータ 3.01x10²⁰ POT

Super-Kのv_μイベント選択 (3.01x10²⁰ POT)

Super-Kでのvμ候補イベント数に対する系統誤差

Systematicパラメータ	ND280フィット前	ND280フィット後			
νフラックス/反応 (ND280フィット)	21.8%	4.2%			
ν反応 (ND280フィットしない)	6.3%				
Super-K	10.7%				
Total	25.1% 13.1%				

 $|\Delta m_{32}| = 2.4 \times 10^{-3} \text{ eV}^2/\text{c}^4$, $\sin^2 2\theta_{23} = 1.0$ の場合


νμ消失モードの解析結果 (3.01x10²⁰ POT)

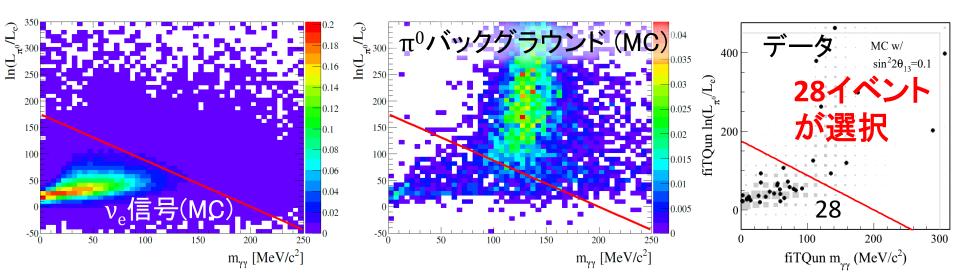
- Super-Kでのエネルギー分布を尤度比を用いてフィット。
- Run1-3のデータで世界最高レベルの精度で測定。

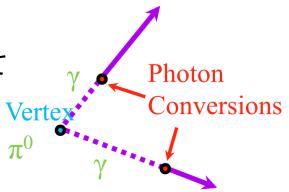
$$\left|\sin^2\theta_{23} = 0.514 \pm 0.082, \ \left|\Delta m_{32}^2\right| = 2.44^{+0.17}_{-0.15} \ \text{eV}^2/\text{c}^4\right|$$

再構成されたエネルギー分布

sin²2θ₂₃-|Δm₃₂²|の信頼領域

• 2013年5月までのデータの解析結果を近日発表予定。


v。出現モードの解析結果


arXiv:1311.4750 [hep-ex] accepted by PRL

2013年5月までのデータ 6.57x10²⁰ POT

Super-Kのv_eイベント選択 (6.57x10²⁰ POT)

- イベント再構成アルゴリズム
 - 従来: リングの発光パターンでフィット (POLfit)
 - 今回:様々な粒子を想定し、時間・電荷を予想して 複数の飛跡までフィット (fiTQun)
- ・ π⁰除去以外のイベント選択: 従来と同じ
- π⁰除去
 - 従来: 再構成したπ⁰質量のみでカット
 - 今回: 再構成したπ0質量と尤度比を用いた2次元カット
- ν_eイベント数は-2%, π⁰ B.G.は-70% (従来との比較)

ν。候補イベント数と系統誤差(6.57x10²⁰ POT)

Super-Kでのve候補イベント数(ND280フィット後)

データ	28		
MC	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$	
ν _μ →ν _e 信号	0.4	17.3	
ν_e B.G.	3.4	3.1	
$ν_{\mu}$ B.G.	0.9	0.9	
\overline{v}_{e} + \overline{v}_{μ} B.G.	0.2	0.2	
MC 合計	4.9	21.6	

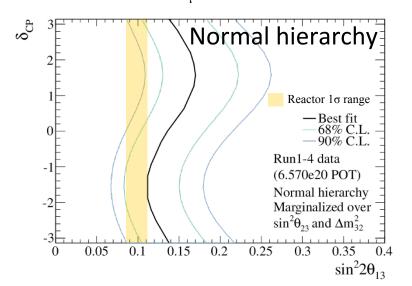
 $\sin^2 2\theta_{23}$ =1.0, Δm_{32}^2 =3.4x10⁻³eV² (Normal hierarchy), δ_{CP} =0

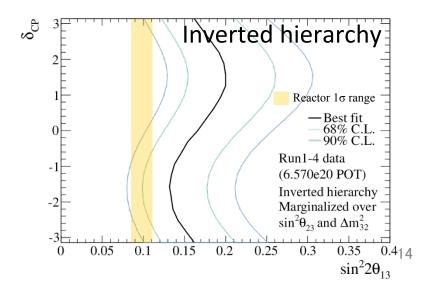
Super-Kでのve候補イベント数に対する系統誤差

Systematicパラメータ	$\sin^2 2\theta_{13} = 0$		$\sin^2 2\theta_{13} = 0.1$	
	NDフィット前	フィット後	NDフィット前	フィット後
νフラックス/反応 (NDフィット)	21.7%	4.8%	25.9%	2.9%
ν反応 (NDフィットしない)	6.8%		7.5%	
Super-K	7.3%		3.5%	
合計	24.0%	11.1%	27.2%	8.8%

ν_e出現モードの解析結果(6.57x10²⁰ POT)

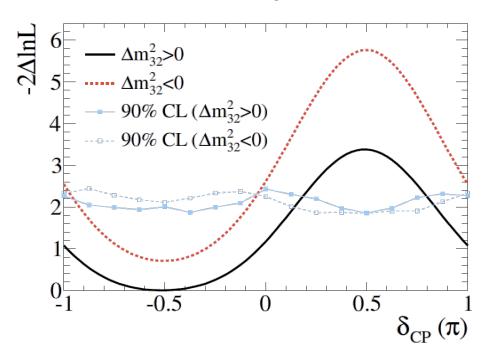
- Super-Kでの電子のp-θ分布を最尤法を用いてフィット。
- θ₁₃=0を7.3σで棄却し、v_μ→v_e振動を発見。
- $|\Delta m_{32}| = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 \theta_{23} = 0.5$, $\delta_{CP} = 0$ のとき


Normal hierarchy ($\Delta m_{32}^2 > 0$)


$$\sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032}$$

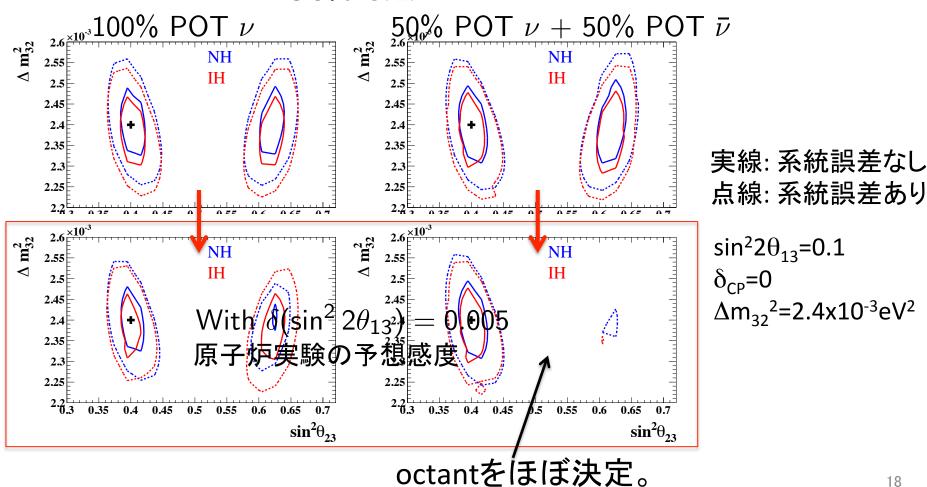
Inverted hierarchy ($\Delta m_{32}^2 < 0$)

$$\sin^2 2\theta_{13} = 0.170^{+0.045}_{-0.037}$$


- θ₁₃-δ_{CP}の信頼領域
 - T2Kの v_{μ} 消失モードの解析結果 $(\theta_{23}, \Delta m_{32})$ への制限)を尤度関数に追加

δ_{CP}への制限 (6.57x10²⁰ POT)

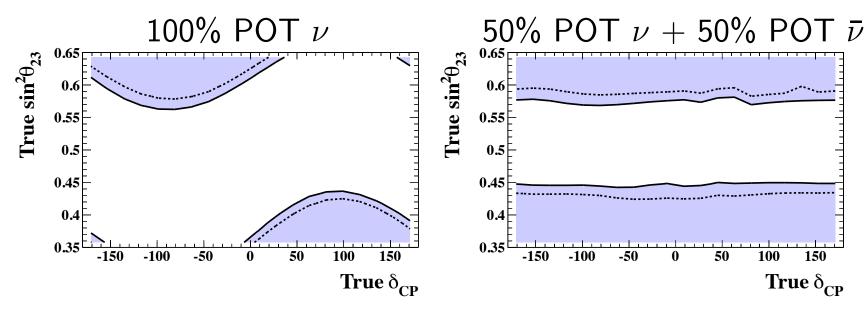
- T2Kの測定結果と原子炉ニュートリノによる θ_{13} の測定結果とを組み合わせて δ_{CP} への制限を与えた。
- δ_{CP} =- π /2が最も好まれる。
- 以下の領域を90% C.L.で棄却。
 - $0.19\pi < \delta_{CP} < 0.80\pi$ (Normal hierarchy)
 - $-\pi < \delta_{CP} < -0.97\pi$, $-0.04\pi < \delta_{CP} < \pi$ (Inverted hierarchy)


今後の目標と予想感度

今後の目標

- T2Kが $v_{\mu} \rightarrow v_{e}$ 振動を7.3 σ で発見し、原子炉実験が $\sin^2 2\theta_{13}$ を高精度で測定した。
- T2K実験の今後の目標
 - θ₂₃と Δm₃₂ の精密測定
 - $-\delta_{CP}$ 、 θ_{23} octant、v質量階層性の測定
- 予想感度study
 - 今回は θ_{23} octantのみ発表する。 $(\delta_{CP}$ とMHは別の機会に)
 - T2K approved POT = $7.8 \times 10^{21} \text{ POT}$
 - $-v_e$ 出現モードと v_μ 消失モードを同時に解析
 - ▽モードでのデータ収集も想定する。

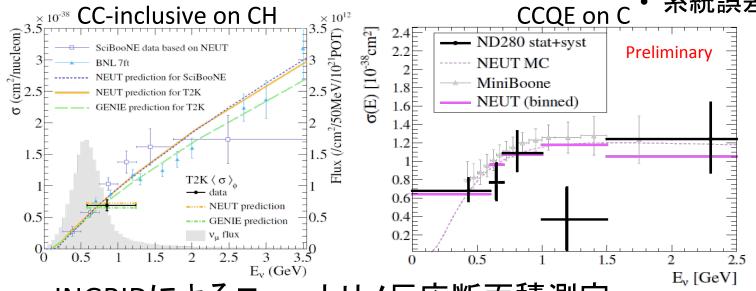
予想感度 (θ_{23} octant)


Case study: $sin^2\theta_{23} = 0.4$, Normal hierarchyの場合 90% C.L.

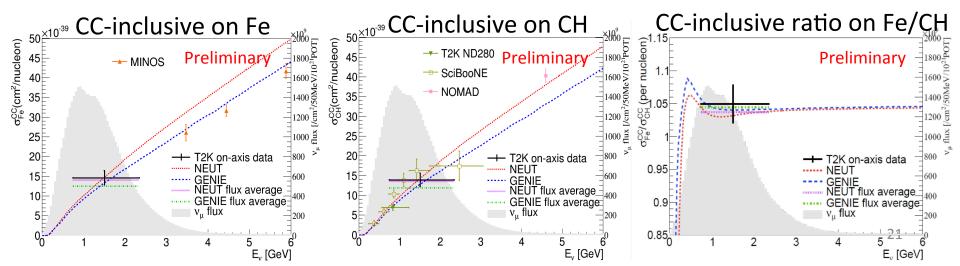
予想感度 (θ_{23} octant)

90% C.L.の感度 (青色の領域内ならoctantを決定可)

実線: 系統誤差なし 点線: 系統誤差あり


仮定

- $\sin^2 2\theta_{13} = 0.1$
- $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ (Normal hierarchy)
- 原子炉実験の予想感度δ(sin²2θ₁₃)=0.005


振動解析以外

ニュートリノ反応断面積測定

- ND280によるニュートリノ反応断面積測定
- 様々な測定が進行中。
- 系統誤差の削減に重要。

• INGRIDによるニュートリノ反応断面積測定

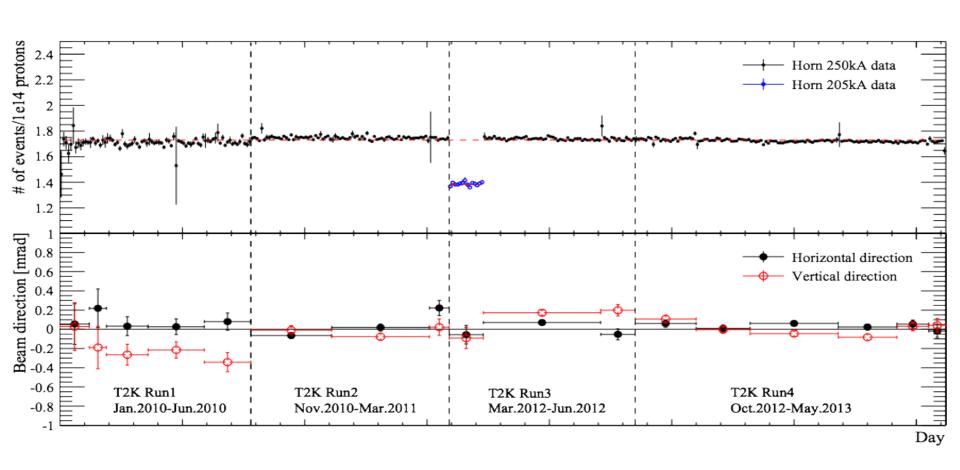
まとめ

v。出現モード

- $-\theta_{13}$ =0を7.3 σ で棄却し、 ν_{μ} → ν_{e} 振動を発見。
- T2K実験の結果と原子炉ニュートリノの測定結果とを組み合わせて、 δ_{CP} への制限を与えた。

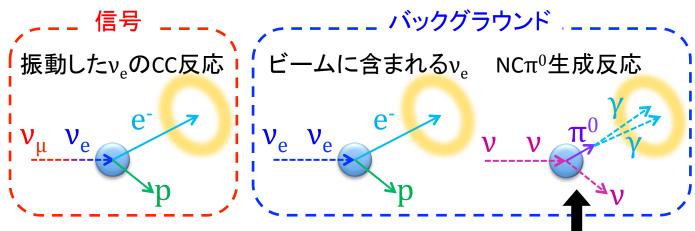
v_u消失モード

- 2012年6月までのデータを使いnm消失モードの解析を行い、 世界最高レベルの精度で θ_{23} と $|\Delta m_{32}|$ を測定した。
- 2013年5月までのデータを使った解析結果を近日公開予定。

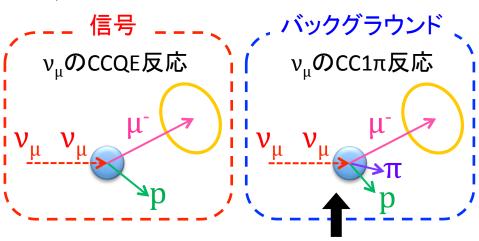

・ 今後の目標

- $-\theta_{23}$ と Δm_{32} の精密測定と δ_{CP} 、 θ_{23} octant、v質量階層性の測定
- 振動解析以外
 - ニュートリノ反応断面積の測定など、さまざまな解析が進行中。

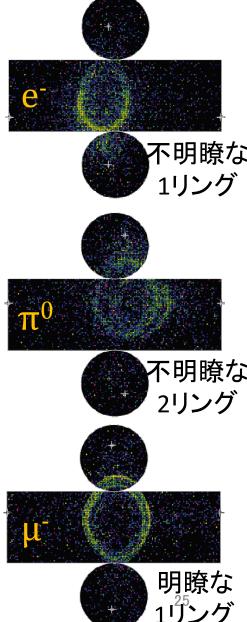
Backup


INGRIDの測定

- ニュートリノイベントレートは1%の範囲で安定。
- ニュートリノビーム方向は1mradよりずっと小さい範囲で安定

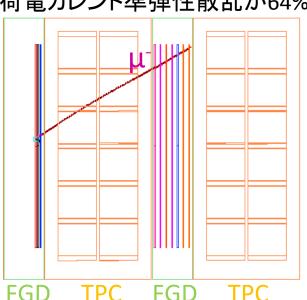


Super-Kでの観測

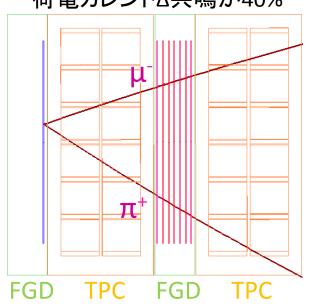

ν_eイベント (不明瞭な1リング)

ν_uイベント (明瞭な1リング)

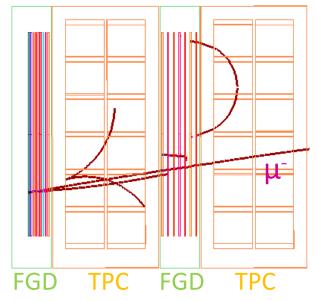
2γが同じ方向に 出たり、片方が再 構成できなかった 場合に、v_eイベン トと誤認。

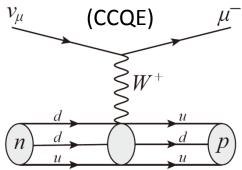


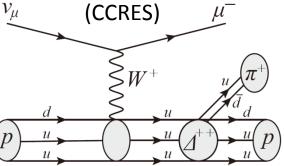
CCQEを仮定してエネルギーを再構成しているため、エネルギーを正しく再構成できない。

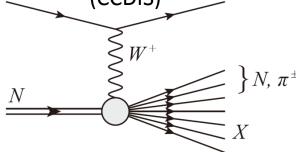

ND280での測定 (イベントの分類)

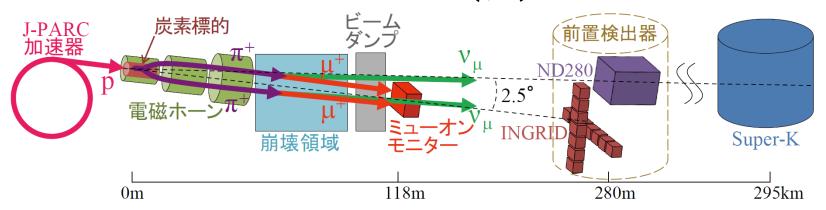
• 各ニュートリノ相互作用を高純度化した3サンプルに分類。

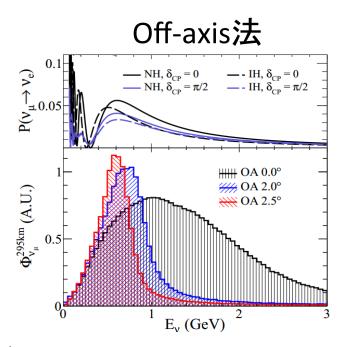

CC0πサンプル 荷電カレント準弾性散乱が64%


CC1πサンプル 荷電カレントΔ共鳴が40%


CC otherサンプル 荷電カレント深弾性散乱が68%

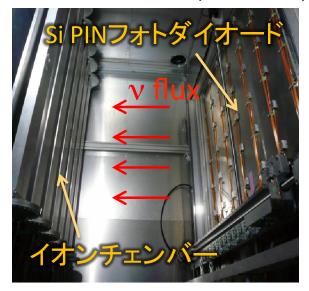

荷電カレント準弾性散乱


荷電カレントΔ共鳴π生成

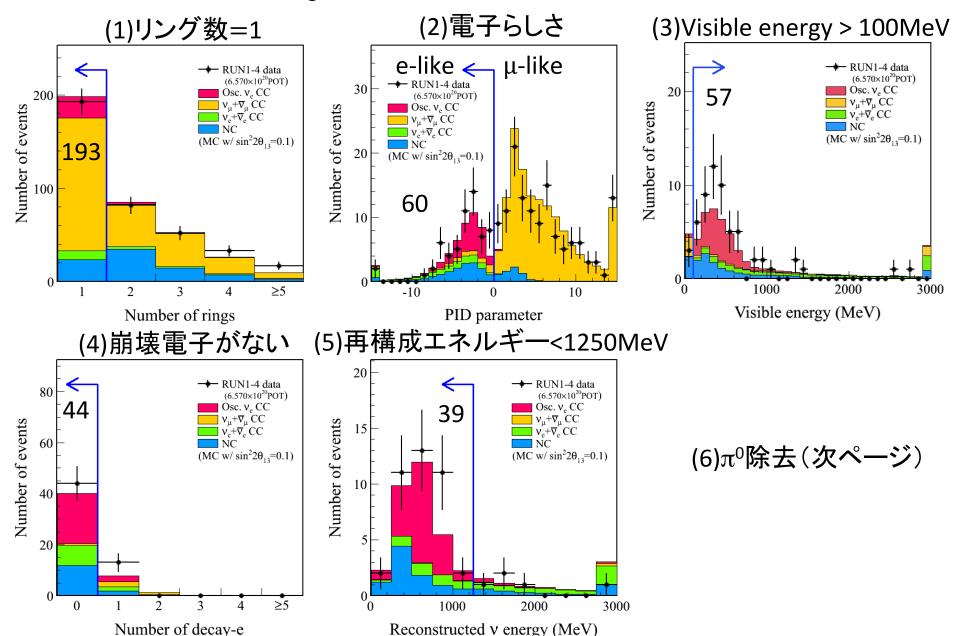


荷電カレント深弾性散乱 ^{v_μ} (CCDIS) ^μ

Off-axis法



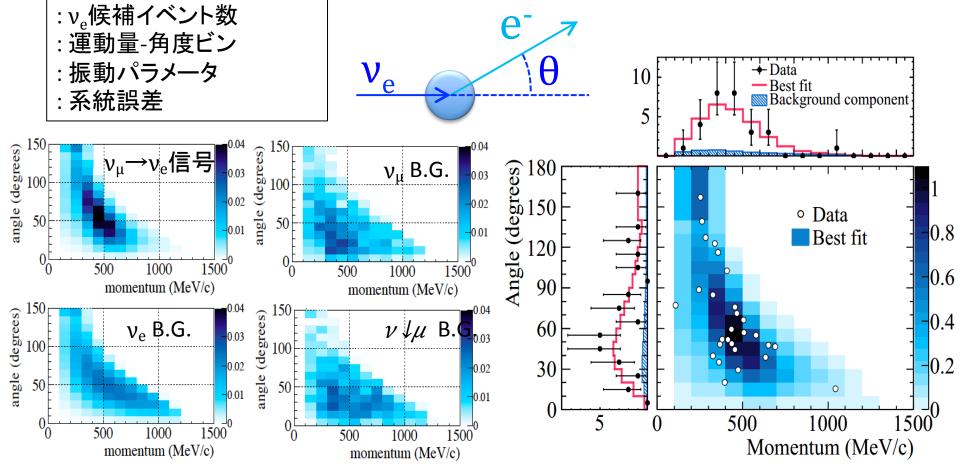
・ビーム中心をSuper-Kの方向から2.5度ずらす


・最大振動領域にナローバンドなビームを実現

ミューオンモニター(MUMON)

ビーム方向をスピル毎にモニター

Super-Kのv_eイベント選択(6.57x10²⁰ POT)


v。出現モードの解析結果

 最尤法を用いて電子の運動量と角度の2次元分布を最も再 現するθ₁₃を探す。
各イベントの電子の 各系統

ル タ 'Q∪₁₃ c j木 タ 。 ポアソン分布

各イベントの電子の 各系統誤差 ポアソン分布 p-θ分布の確率の積 の不定性

 $\mathcal{L}(N_{obs.}, \boldsymbol{x}; \boldsymbol{o}, \boldsymbol{f}) = \mathcal{L}_{norm}(N_{obs.}; \boldsymbol{o}, \boldsymbol{f}) \times \mathcal{L}_{shape}(\boldsymbol{x}; \boldsymbol{o}, \boldsymbol{f}) \times \mathcal{L}_{syst.}(\boldsymbol{f})$

