Super-Kamiokande High Energy Group Research Status

> Oscillation analysis : zenith angle sterile neutrino

> > proton decay solar WIMP search

12/20-21 2013,

ICRR annual workshop

> Koun Choi, Nagoya university

Friday, December 20, 13

remind atmospheric neutrino oscillation three flavor zenith angle analysis

Normal hierarchy: $\chi^2_{min} = 556.7 / 477 \text{ dof}$ Inverted hierarchy: $\chi^2_{min} = 555.5 / 477 \text{ dof}$ $\chi^{2}_{min}(NH) \chi^{2}_{min}(IH) = 1.2$ (Sensitivity for mass hierarchy: $\chi^2(IH) - \chi^2(NH) = 1.06$ $\chi^2(NH) - \chi^2(IH) = 0.90)$

Normal hierarchy										
*sin ² 0 ₁₃ fixed to be 0.025 (reactor)										
$\chi^2_{min} = 556.7 / 477 dof$										
Δm^2_{32}	$n_{32}^{2} = 2.66_{-0.40}^{+0.15} \times 10^{-3} eV^{2}(1\sigma)$									
$\sin^2\theta_{23}$	0.425	0.391 - 0.619 at 90%CL								
δCP	300°	All allowed at 90% CL								
Inverted hierarchy										
*sin ² θ_{13} fixed to be 0.025 (reactor) $\chi^2_{min} = 555.5 / 477 \text{ dof}$										
Δm^2_{32}	$2.66^{+0.17}_{-0.23} \times$	$10^{-3} eV^2(1\sigma)$								
$sin^2\theta_{23}$	0.575	0.393 - 0.630 at 90%CL								
δCP	300°	All allowed at 90% C.L.								

er

2012 Iyogi

ement

improv

- Added more data (live time 1097 \rightarrow 1417 days)
- New fitter (FitQun) selected sub-GeV 1-ring e-like sample

- Introduced pulls for osc parameters
- New MC & reconstruction, update of sys errors, improved & bug fixed in oscillation probability computation, etc

 χ^{2}_{min} (NH)- χ^{2}_{min} (IH)=1.5

Sensitivity for mass hierarchy χ² (NH)- χ² (IH)=1.8

18

effect

fit for $|U\mu 4|^2$

fit for $|U\tau 4|^2$

Constraint from *not* seeing sterile matter effect

Our fast oscillation assumption good to $0.8\ eV^2$

 $sin^{2}(\Delta m^{2}L/4E)$ starts oscillate below 0.8eV²

a little more detail in back up slides but the best will be keeping an eye on the new paper coming soon introd uction

atmospheric neutrino oscillation Lorentz invariance violation search

2012 Tarek

Akiri

- The Standard Model Extension (SME) has all the features of the SM but adds all general Lorentz violating terms (arXiv:1112.6395)
- LV can be treated as a perturbative effect

v→v v→v

$$\delta h = rac{1}{|oldsymbol{p}|} \begin{pmatrix} \widehat{a}_{ ext{eff}} - \widehat{c}_{ ext{eff}} & -\widehat{g}_{ ext{eff}} + \widehat{H}_{ ext{eff}} \ -\widehat{g}_{ ext{eff}}^{\dagger} + \widehat{H}_{ ext{eff}}^{\dagger} & -\widehat{a}_{ ext{eff}}^T - \widehat{c}_{ ext{eff}}^T \end{pmatrix}$$

• There is then 9 complex a and c parameters (18 independent parameters in total) for isotropic model, up to 1st order

$$\delta h = \frac{1}{|p|} \begin{pmatrix} a_{ee} - c_{ee} & a_{e\mu} - c_{e\mu} & a_{e\tau} - c_{e\tau} \\ a_{e\mu}^* - c_{e\mu}^* & a_{\mu\mu} - c_{\mu\mu} \\ a_{e\tau}^* - c_{e\tau}^* & a_{\mu\tau}^* - c_{\mu\tau}^* \end{pmatrix} \begin{pmatrix} a_{\mu\tau} - c_{\mu\tau} \\ a_{\tau\tau} - c_{\tau\tau} \end{pmatrix}$$

- Lorentz violation effects calculated up to 2nd Order Akiri
- Performed the analysis for 3 sectors: μτ, eµ and eτ
 each one having 4 coefficients: Re(a), Im(a), Re(c), Im(c)
- Fitted 3 parameters at a time: δCP and the real and imaginary parts of the LV coefficient.
- Performed the fit for both the normal and inverted hierarchy and Tested 1417.4 days SK4 data

Comparison with existing results 2012 Tarek Akiri

Improvement of about 3-4 orders of magnitude on existing dimension 3 coefficients!!

Improvement of about 7 orders of magnitude on existing dimension 4 coefficients!!
Also the 1st constraint on the µ⊤ LV parameters using a common SME framework
new paper will appear soon

result

result

proton decay search

- 2012 M.Miura
- Updated to 1417.4 days (260 kt · year exposure)

• $p \rightarrow e^+ \pi^0$

New pion scattering :

- efficiency rate decreased (45% \rightarrow 40%) ,
- BG rate increased

Updated Lifetime limit (90% CL) : > 13.5 x 1E33 year

	Exp.	Eff(%)	BKG	Data			SK1	SK2	SK3	SK4		
	(Kton-yr)					Eff (%)	39.2	38.5	40.1	39.6		
SK1	91.7	44.6±0.7	0.20	0		BKG	0.27	0.15	0.07	0.22		
SK2	49.2	43.5±0.7	0.11	0		Data	0	0	0	0		
SK3	31.9	45.2±0.7	0.06	0								
SK4	46.9	45.0±0.7	0.08	0								
Total	219.7		0.45	0								
	old interaction model						new interaction model					

result

• $\mathbf{p} \rightarrow \mathbf{\nu} \mathbf{K}^+$

Updated fitter (apfit) applied :

- total BG : 0.55 \rightarrow 0.37 : 30% reduced for prompt γ method,

- almost no difference for $\pi^+\pi^0$ method.

Updated combined lifetime limit : > 5.9 x1E33 years (Previous official: 4.0x1E33 yrs @220kt · yrs)

• $\mathbf{p} \rightarrow \mathbf{e} \mathbf{v} \mathbf{v} \& \mathbf{p} \rightarrow \mu \mathbf{v} \mathbf{v}$

A first 3-body analysis of purely leptonic decay modes Used a spectrum fitting technique First result : 1.7E32/1.9E32 yrs respectively (a order improved compared to PDG)

> 2012 M.Miura & V.Takhistov

introd uction

WIMP search

introd uction

Indirect solar WIMP search

- WIMP capture and annihilation inside the Sun \rightarrow neutrino escapes
- The scattering process is the same with direct detection → limit on the WIMPnucleon scattering cross-section
 "a large Hydrogen WIMP detector for free" : Strong sensitivity to SD cross-section
- BG : atmospheric neutrinos (however directional information helps)
- bonus : small nuclear-physics uncertainty

Friday, December 20, 13

2) Test signal contribution by pulled χ^2 method

Fit SK data to "atmospheric neutrino + WIMP induced neutrino" to find best fit value of WIMP contribution

$$\begin{split} \chi^2 &= 2\Sigma_{n=1}^{\#ofbins} [N_n^{BG}(1+\Sigma_j f_j^n \epsilon_j) + \beta N_n^{WIMP}(1+\Sigma_k f_k^n \epsilon_k) - N_n^{data} + \\ & N_n^{data} ln(\frac{N_n^{data}}{N_n^{BG}(1+\Sigma_j f_j^n \epsilon_j) + \beta N_n^{WIMP}(1+\Sigma_k f_k^n \epsilon_k)})] + \Sigma_j(\frac{\epsilon_j}{\sigma_j}) + \Sigma_k(\frac{\epsilon_k}{\sigma_k}) \end{split}$$

used SK I-IV data (3903days) fully used energy & angle & flavor information

result 90% Upper limit on SD/SI scattering X-section

result shown in 3 lines to be model

The result surprisingly competes with human-maid direct detectors.

→ important result from a very different detection strategy & uncertainties than direct searches.

or later

Summary

- 3 flavor oscillation zenith angle analysis : updated result shows $\chi^2(NH)-\chi^2(IH) = 1.5$
- Sterile neutrino search : excludes a large part of global allowed signal, provides a clean Δm²-independent constraint useful for the community
- LIV search : first result on $\mu\tau$ LV parameters, 3-7 orders improved limits on $e\mu$, $e\tau$ sectors.
- Proton decay : $p \rightarrow e^+ \pi^0$, νK^+ updated, first 3-body results on $p \rightarrow e^{\nu} k \mu \nu \nu$ channel : a order improved compared to PDG
- Solar WIMP search : world-best limit in SD cross-section below 200GeV, rules out large space for SI cross-section for >4GeV WIMPs with *ττ* channel.
- + neutron tagging, etc many physics which couldn't be covered.

Back Up

three flavor zenith angle analysis ^{2012 K.P.Maggie}

- Given large sin²20₁₃ aim of atmospheric neutrino studies:
 - To solve $\sin^2\theta_{23}$ octant degeneracy ($\theta_{23} > 45^\circ$ or $\theta_{23} < 45^\circ$)
 - To obtain complementary information on δ_{CP}
 - Mass hierarchy determination
- Full 3-flavor analysis includes solar term, ν_{e} due to matter effect and their interference:

 $\frac{\Phi(v_e)}{\Phi_0(v_e)} \approx \begin{array}{l} P_2 \circ (r \circ \cos^2 \theta_{23} - 1) \text{ solar term} \\ -r \circ \sin \theta_{13} \circ \cos^2 \theta_{23} \circ \sin 2\theta_{23} \circ (\cos \delta \circ R_2 - \sin \delta \circ I_2) \end{array}$ $+2 \sin^2 \theta_{13} \circ (r \circ \sin^2 \theta_{23} - 1) \theta_{13} \text{ resonance} \\ *By \text{ using statistically enhanced } v_e \text{ and anti-} v_e \text{ sample, this resonance term would reveal the neutrino mass hierarchy} \\ P_2 = \sin^2 2\theta_{12,M} \sin^2(\phi_m/2) \text{ where } \phi_m \text{ is the phase oscillation in matter} \\ r = v_{\mu}/v_e \text{ flux ratio as a function of energy} \\ R_2 = -\sin 2\theta_{12,M} \cos 2\theta_{12,M} \sin^2(\phi_m/2) \\ I_2 = (-1/2) \sin 2\theta_{12,M} \sin \phi_m \\ \theta_{13} \approx \theta_{13,M} \end{array}$

Solar term @ sub-GeV θ_{13} resonance @ multi-GeV interference @ sub- and multi-GeV

three flavor zenith angle analysis

Contribution of update

- **D** Update of Sub-GeV single ring e-like sample (new π^0 cut)
- Update of method of reweighting oscillation parameter
 - oscillation probability computation

Primary effect is extra v_{μ} disappearance at all path lengths

sterile neutrino search

2012 Alex Himmel

2+I ⊿oscillogram

- Large enhancement of sterile effect at high L and large E due to matter
- Alternating red-blue are horizontal shifts of the oscillation minima
- Still see the all-over effect we had before

PC Through

0

cos zenith

• NC Matter effects create shape distortion in PC/Up- μ zenith distribution

400

200

sterile neutrino search

2012 Alex Himmel

When is Δm_{41}^2 no longer "large"?

- When do the oscillations no longer appear fast?
 - This will be the worst at short L's and large E's, so lets focus on Up- μ with cos θ_z > -0.1
 - Loop through all these events and calculate the mean of sin²($\Delta m^2 L/4E$) for various Δm^2
- Doing this, the approximation is valid down to $\sim 0.8 \text{ eV}^2$

sterile neutrino search

2012 Alex Himmel

When is Δm_{41}^2 no longer "large"?

- However, the limit on $|U_{\mu4}|^2$ is driven by the low $|U_{\tau4}|^2$ region.
 - In this region, the dominant samples are Sub-GeV muons
 - Almost no power comes from Up– μ
- For these samples, the "large" assumption is ~always valid so $|U_{\mu4}|^2$ limit really is a vertical line in Δm^2 to a good approximation

Lorentz invariance violation search 2012 Tarek Akiri

How well can SK do?

Solar WIMP search

90% upper limit on WIMP-induced muon neutrino flux

Solar WIMP search

Interpretation to SI WIMP-proton cross section

- Doesn't sun only have sensitivity for SD?
 - Capture from hydrogen is kinematically suppressed

$$\sigma_i^{SI} = \sigma_p^{SI} I^2 \frac{\mu_i^2}{\mu_p^2}$$

- But the Sun is huge & heavier elements capture energetic WIMPs more efficiently
- Our limit can show interesting interpretation on SI coupling WIMP too.

compete here with future detectors(XENON, LUX, superCDMS, PICO, DAMIC...)