Precision solar neutrino measurements with Super-Kamiokande-IV

修士博士研究発表会 2013/02/22 中畑研究室 横澤 孝章

contents

- Introduction
 - Solar neutrino
 - Physics motivation
 - Super-Kamiokande detector
- SK-IV solar neutrino analysis
 - Improve point
 - Systematic error
- Solar neutrino results
 - total Flux
 - energy spectrum
 - Day/Night Asymmetry
 - Global oscillation analysis

Solar neutrino

The origin of solar energy : nuclear fusion reaction deep inside the Sun.
 4p -> He+2e⁺+2v_e

- > ~99% of the total solar luminosity : pp chain (~1% from CNO cycle).
- SK detector : sensitive to ⁸B neutrinos

Neutrino oscillation

When traveling in vacuum;

 $P_{\alpha ->\beta} = \sin^2 2\theta \sin^2 \left(\frac{1.27 M^2 \text{[eV^2]}L[m]}{E[\text{MeV}]} \right) \text{ delta mass square (m_2^2 - m_1^2)} \text{ mixing angle}$

For solar neutrino case;

- need to take into account matter effect of Sun and Earth (MSW effect).

Hamiltonian -> $\mathcal{H} = \mathcal{H}_v + \mathcal{H}_M$ $tan 2\theta_M = \frac{tan 2\theta}{1 - \frac{VE}{\Delta m^2 cos 2\theta}}$ $L_M = \frac{\pi}{1.27\sqrt{(2V + \frac{\Delta m^2}{E} \cos 2\theta)^2 + (\frac{\Delta m^2}{E} \sin 2\theta)^2}}$

Physics motivation

Direct observation of the MSW effect

- Energy spectrum distortion
 - Distorted by the the effect of sun matter(Upturn)
 - Lower energy data(<4.5MeV(kin)) with lower background</p>
- Day/Night flux asymmetry
 - > A few percent of flux difference by the effect of earth matter
 - Large statistics and lower systematic uncertainty.

Phys. Rev. Lett. 107 141302(2011)

Super-Kamiokande detector

Located 1000m underground at Ikenoyama (Kamioka)
 reduce cosmic ray muon background (1/100,000)

Ikenoyama (Summer)

Kenkyu-tou

Ikenoyama (Winter)

Mine-entrance

Super-Kamiokande detector

- Located 1000m underground at Ikenoyama (Kamioka)
 reduce cosmic ray muon background (1/100,000)
- Large ring imaging water Cherenkov detector
 50,000 tons of pure water, ~11,000 PMT(ID)

Inner part of SK detector

SK detector

20-inch PMT

Super-Kamiokande detector

- Located 1000m underground at Ikenoyama (Kamioka)
 reduce cosmic ray muon background (1/100,000)
- Large ring imaging water Cherenkov detector
 50,000 tons of pure water, ~13,000 PMT

Start observation in 1996
 In 2008, new electronics was installed (SK-IV)

New electronics ; QBee

Solar neutrino measurements in SK

SK-IV solar neutrino analysis

SK-IV data sets

➢ livetime

>1069.3 days (Oct.2008 – Mar.2012)

Trigger efficiency

➤Used software trigger(34hits/200ns)

>~99%@4.0MeV(kin), ~86%@3.5MeV(kin)

Improvement of water circulation system
 Improvement of solar neutrino MC
 data reduction
 Systematic uncertainties

Improvement of water circulation system

≻lower background in the center of the detector (when SK-III)

- ➤Keep backgrounds near the wall
- Supply water temperature control system(Jan.2010)
 - ➤Control temperature within 0.01°C
 - The convection rate was much smaller.

Solar angle distribution

Improvement of solar neutrino MC

Position dependence of water transparency
 Supply purified water from bottom and drain from top
 Introduce Top Bottom Asymmetry parameter (TBA)

➤Time variation of TBA

>Xe light source (1event/min)

Nickel source (emit ~9MeV gamma ray uniformly)

Improvement of solar neutrino MC

With TBA in MC

Without TBA in MC

Success to reduce energy scale systematics (Especially direction dependence)
 SK-I ; 0.5% SK-III ; 0.25% (SK-III solar MC is also improved)

Flux systematic uncertainty

Source	SK-IV Flux (4.0-19.5MeV(kin))	SK-III Flux (4.5-19.5MeV(kin))	SK-I Flux (4.5-19.5MeV(kin))
Energy Scale	±1.2%	±1.4%	} ±1.6%
Energy resolution	±0.15%	±0.2%	
8B spectrum	±0.33%	±0.4%	+1.1/-1.0%
Trigger efficiency	±0.1%	±0.5%	+0.4/-0.3%
Vertex shift	±0.17%	±0.54%	±1.3%
Reduction	±0.6%	±0.9%	+2.1/-1.6%
Spallation dead time	±0.2%	±0.2%	±0.2%
Background shape	±0.1%	±0.1%	±0.1%
Angular resolution	±0.36%	±0.67%	} ±1.2%
Signal extract method	±0.7%	±0.7%	
Cross section	±0.5%	±0.5%	±0.5%
Total	±1.7%	±2.1%	+3.5/-3.2%

Best value compared with SK-I,III

Solar neutrino flux

Energy spectrum (SKI-IV)

- Estimate systematic uncertainties for each phase.
- Obtained flat consistent

Energy spectrum (SK-I,II,III,IV combined)

- Statistic error only
- \succ Estimate χ^2 in each SK phase

'Flat probability' is favored $1.1-1.9\sigma$ level

Day/night asymmetry analysis

- Unbinned Day/night analysis (PRD69,011104, D/N amplitude) is applied in each SK phase, then obtained Day/Night asymmetry values.
 - consider energy and zenith angle dependence of event rate variation
- > Day/Night asymmetry consistent with zero @2.3 σ

Day/night asymmetry analysis

D/N Asymmetry has sensitivity to Δm₂₁²
 D/N Asymmetry has small sensitivity to Sin²θ₁₂

Global solar analysis

Solar neutrino experiments (red : newly add in this analysis)

- ≻ SK
 - SK-I 1496 days, spectrum 4.5-19.5MeV(kin) + D/N : E ≥ 4.5MeV(kin)
 - SK-II 791 days, spectrum 6.5-19.5MeV(kin) + D/N : E ≥ 7.0MeV(kin)
 - SK-III 548 days, spectrum 4.0-19.5MeV(kin) + D/N : $E \ge 4.5$ MeV(kin)
 - SK-IV 1069 days, spectrum 4.0-19.5MeV(kin) + D/N : $E \ge 4.5$ MeV(kin)
- SNO : SNO combined (arXiv:1109.0763) (NC flux = (5.25+/-0.20) 10⁶ cm⁻² s⁻¹)
- Radiochemical : Cl, Ga
 - Ga rate: 66.1+/-3.1 SNU (All Ga global) (PRC80, 015807(2009))
 - Cl rate: 2.56+/-0.23 SNU (Astrophys. J. 496 (1998) 505)
- Borexino : PRL107, 141302 (2011)

Reactor neutrino experiment

KamLAND : PRL 100, 221803 (2008)

consistent with Short Baseline experiments

Global oscillation analysis (fixed Sin θ_{13})

> There is some tension for Δm_{21}^2 between solar global and KamLAND (~1.9 σ)

Summary

- SK-IV solar neutrino analysis ; livetime=1060.3days
 - With new temp. control system, continuously low background
 - ~ ~99%trg. eff.@4.0MeV(kin), 86%trg. eff.@3.5MeV(kin)
 - Introducing position dependence of water transparency, reducing position dependence of water transparency(0.35->0.1[%])
 - Flux systematic error(4.0-19.5MeV(kin)) is estimated by 1.7[%]
- SK combined energy spectrum shows 'Flat probability' is favored 1.1-1.9σ level
- SK combined day/night asymmetry is obtained non-zero value@2.3σ
- From Global oscillation analysis, the oscillation parameters is obtained by;
 - $\operatorname{Sin}^{2}(\theta_{12}) = 0.314^{+0.014} \Delta m_{21}^{2} = (4.86^{+1.44} 10.52) [10^{-5} \text{eV}^{2}]$
- There is some tension for $\Delta m_{21}{}^2$ between solar global and KamLAND (~1.9\sigma)