宇宙線研究所 将来計画勉強会 2006年6月29日

メガトンクラス実験

中畑 雅行 及び宇宙ニュートリノ研究部門スタッフ

<u>水チェレンコフ実験装置の歴史と展望</u>

<u>スーパーカミ</u>オカンデ カミオカンデ、IMB メガトンクラスの実験装置 めざす物理 ●陽子崩壊の発見 • 未知振動パラメータの決定 $(\theta_{13}, \text{mass hierarchy}, \theta_{23})$ octant) (大気v,人工v) ニュートリノのCP phase (大気v, **人工**v) •大気ニュートリノ振動の発見 振動パラメータ、物質効果の精 •太陽ニュートリノ振動の発見 ●招新星ニュートリノの観測 密測定(大気v,人工v、太陽v) ●人工ニュートリノによる振動 •太陽ニュートリノの観測 超新星バーストの観測による爆 •大気ニュートリノ異常 の確認 発過程の精密観測

22,500トン有効体積

建設期間:5年

~1000トン有効体積

建設期間:2-3年

 超新星背景ニュートリノスペクト ルの測定

建設期間:~10年

<u>最近研究部門でスタディした内容</u>

<u>detectorの大きさ、形</u>

意味ある物理を出すにはどのぐらいのサイズが必要か? (5, 10, 20, 40 Mton・yearの場合についてstudyする。) Statisticsでlimitされるか、systematic errorでlimitされるか? Systematic errorでlimitされる場合はそれは何か? 改善するにはどうする か?

<u>深さ、場所</u>

Cosmic ray backgroundはどのぐらいまで大丈夫か?

detector material

水がベストか? 他の物質の方がメリットがあるか? 水に何かを溶かしてsensitivityをあげることができるか?

<u>光検出器</u>

国際競争力

受ける光量を多くするとメリットはあるか?(energy 分解能) 時間分解能をあげるとメリットはあるか? Dark rateはどこまで下げるか?

GUTスケール、プランクスケールを直接探る実験

<u>陽子崩壊の理論</u>

Dimension=6 (2 fermion – 2 fermion)

Dimension=5 (2 fermion - 2 sfermion)

<u>陽子崩壊寿命の理論的予測</u>

J.Ellis in NNN05

Proton Lifetime in Flipped SU(5) \times U(1)

薄い青線がτ(p→e⁺π⁰)

JE + Nanopoulos + Walker

J.Ellis in NNN05

Lifetime accessible to Experiment?

JE + Nanopoulos + Walker

<u> τ (p→e⁺π⁰):理論からの予想</u>

<u> τ (p→⊽K+):理論からの予想</u>

 τ (p $\rightarrow \overline{v}$ K⁰⁺) (years)

p→e⁺π⁰ シミュレーション

Super-Kamiokande

Run 999999 Event 294 102-11-06:00:06:35 Inner: 3849 hits, 8189 pE Outer: 4 hits, 2 pE (in-time) Trigger ID: 0x03 D wall: 946.1 cm FC. mass = 909.0 MeV/c²2

Charge (pe)

>15.0
13.1-15.0
11.4-13.1
9.8-11.4
8.2- 9.8
6.9- 8.2
5.6- 6.9
4.5- 5.6
3.55 4.5
2.6- 3.5
1.9- 2.6
1.2- 1.9
0.8- 1.2
0.4- 0.8

0.1- 0.4 < 0.1

Background sample for $p \rightarrow e^+ \pi^0$

(p→e⁺ π^0 signal efficiency: ~40%)

更なるバックグラウンド除去(for $p \rightarrow e^+ \pi^0$)

Tight momentum cut to reduce BG \Rightarrow target is mainly free protons

SK cut → tight cutで S/N比は6.4倍向上

<u>P→⊽K+ 崩壊モード探索の方法</u>

prompt - γ (6.3MeV)

(41% probability, H.Ejiri, Phys. Rev. C. 48 (1993)1442)

P→vK⁺ prompt gamma method

Expected signature

TOF subtracted timing histogram of a $\overline{v}K^+$ decay

データは、SK-I (1489 days data)

muonの方向を除いた領域で、 muonに先行する、 12nsec sliding time window の中に入るhit数が最大になる 時の数をN_{hity}と定義している。

<u>Prompt gamma によるN_{hit}と光電面被覆率</u>

<u>大気ニュートリノ</u>

大気ニュートリノによって未知の振動パラメータをどこまで探 れるか?

Search for Non-zero θ_{13}

Statistical Significance for Non-Zero θ_{13}

Sign of Δm_{23}^2 ?

Sign of Δm^2_{23} ?

χ^2 difference (inverted – normal)

1.8 Mton•yr

True : normal mass hierarchy

<u>θ23 octantの効果</u>

 μ/e ratio @low energy is useful to discriminate $\theta_{23} > \pi/4$ and $<\pi/4$.

Discrimination between $\theta_{23} > \pi/4$ and $<\pi/4$ with the (12) and (13) terms

Statistical Significance for Octant of θ_{23}

Effect of δ_{CP} in Atmospheric Neutrino Data

e-like (3 flavor) / e-like (no-osc)

<u>長基線加速器ニュートリノ</u>

T2K first phaseで $v_{\mu} \rightarrow v_{e}$ appearanceが見えたとする

T2K 90%CL sensitivity

$$v_{\mu} \rightarrow v_{e} \text{ oscillation probability}$$

$$P(v_{\mu} \rightarrow v_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right)$$

$$+8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E}$$

$$-8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E}$$

$$-8C_{13}^{2}C_{12}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E}$$

$$-8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}(1 - 2S_{13}^{2})$$
Where $a = 7.56 \times 10^{-5} [cV^{2}] \cdot \left(\frac{\rho}{[g/cm^{3}]}\right) \cdot \left(\frac{E}{[GeV]}\right)$ a: parameter of matter effect
For $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$

$$\delta \rightarrow -\delta, a \rightarrow -a$$

$$A_{CP} \equiv \frac{P - \overline{P}}{P + \overline{P}} \approx \frac{\Delta m_{12}^{2}L}{E} \cdot \frac{\sin 2\theta_{12}}{\sin\theta_{13}} \cdot \sin\delta$$

$\nu_{\mu}/\overline{\nu}_{\mu}$ normalization by beam

Need 3.4times longer running time for $\overline{\nu}_{\mu}$ because of small σ .

Differences of spectra causes fake asymmetry → need to be corrected
expected signal and BG

 $\begin{array}{lll} \nu_{\mu}:2yr,\,\nu_{\mu}:6.8yr & \Delta m_{21}{}^{2}=\!6.9x10^{-5}eV^{2}\\ 4MW & \Delta m_{32}{}^{2}=\!2.8x10^{-3}eV^{2}\\ 0.54Mt & \theta_{12}\!=\!0.594\\ & \theta_{23}\!=\!\pi/4\\ & \theta_{13}\!=\!0.05 \end{array}$

 $sin^{2}2\theta_{13}=0.01$

	signal		background				
	noCP	δ=π/2	total	$ u_{\mu}$	$\overline{\nu_{\mu}}$	v _e	\overline{v}_{e}
ν _μ -ν _e	536	229	913	370	66	450	26
$\overline{\nu}_{\mu} \overline{-\nu}_{e}$	536	790	1782	399	657	297	430

number of $v_e, \overline{v_e}$ appearance events

number of $v_e, \overline{v_e}$ appearance evnets

<u>CP phaseに対する感度(T2K 2nd phase)</u>

 3σ CP sensitivity : $|\delta|$ >20° for sin²2 θ_{13} >0.01 with 2% syst.

<u>太陽ニュートリノ</u>

<u>θ12, Δm12²の現状</u>

<u>疑問</u>

ニュートリノと反ニュートリノ振動は 同じか?(CPTのテスト)

Matter effect (太陽内、地球内)は MSWの予想通りか?

size	ー日あたりの 8B solar v数(*)	ー日データの統 計誤差(**)
0.5 Mton	300/day	8%
1 Mton	600/day	6%
2 Mton	1200/day	4%
4 Mton	2400/day	3%

(*) 5MeV threshold、SK cutを仮定。 (**) 太陽方向でS/N比=1 (SK程度)を仮定

⁸B fluxはT^{~18}に比例するので、0.4%(0.5Mt)から0.2%(4Mt)の精度 で日々太陽中心温度をモニターできる。

メガトンクラス実験装置の感度(スペクトル)

<u>8B スペクトルの歪み</u>

 $sin^2\theta$ =0.28, Δm^2 =8.3 × 10⁻⁵ eV²

<u>屋/夜の違いの有意性(1Mton・yr</u>) 色は系統誤差の違い: 1.3%(SK-I), 0.5%, 統計のみ 振動パラメータはsolar best fit (Δm_{12}^2 =6.3x10⁻⁵ eV², tan² θ_{12} =0.40)を仮定 KamLAND中心値(実線, Δm_{12}^2 =7.9x10⁻⁵)、3kt•yrで予想される95%下 限での値(黒点線: Δm_{12}^2 =7.5x10⁻⁵ eV²)

<u> 昼/夜の違いの有意性 (5Mton•yr)</u>

色は系統誤差の違い: 1.3%(SK-I), 0.5%, 統計のみ 振動パラメータはsolar best fit (Δm₁₂²=6.3x10⁻⁵ eV², tan²θ₁₂=0.40)を仮定 KamLAND中心値(実線,Δm₁₂²=7.9x10⁻⁵)、3kt•yrで予想される95%下 限での値(黒点線:Δm₁₂²=7.5x10⁻⁵ eV²)

<u>有限なD/N asymmetry観測の有意度</u>

<u>Solar global bestとKamLANDとの違い</u>

solar global best fit: Δm_{12}^2 =6.3x10⁻⁵ eV², tan² θ_{12} =0.40

<u>超新星ニュートリノ</u>

Supernova event rate in Mega-ton detector

ve散乱イベントも1万イベントぐらい期待される。

<u>電子散乱現象の識別(超新星との方向分布)</u>

SN at 10kpc, 1mega-ton

<u>Neutronization burst (e-+p \rightarrow n+v_e)</u>

SN at 10kpc, 1mega-ton

Number of events from 20msec to 0.1 sec (1bin=10msec)

Neutronization burst can be observed even with neutrino oscillations.

Neutral current events

K.Langanke, P.Vogel and E.Kolbe, Phys.Rev.Lett.76(1996)2629.

$V = \sqrt{2}G_F N_e(x,t)$ GL Fordi E Lisi A Mirizzi and D Montaning has at /0.4

超新星爆発の頻度

S. Ando, J. F. Beacom and H.Yuksel, astro-ph/0503321

Detection Efficiency for SN@4Mpc

<u>有効体積と近傍銀河超新星の頻度</u>

<u>超新星背景ニュートリノ</u> Supernova Relic Neutrinos(SRN)

<u>SRNの予想されるスペクトル</u>

2. Formulation and Models How to Calculate the SRN Flux

We need information concerning...

- I. <u>Neutrino spectrum</u> emitted from each supernova explosion
- 2. <u>Neutrino oscillation</u> within supernovae and the Earth
- 3. Supernova rate

 $R_{\mathsf{SN}}(z) \frac{dN_{\nu}(E_{\nu}')}{dN_{\nu}(E_{\nu}')}$ z_{max}

Star formation rate (SFR)

 Recent GALEX determination of star formation rate (SFR)

 Supernova rate is inferred from SFR.

Schiminovich et al. 2005

Neutrino spectrum from each Z range

S.Ando, Astrophys.J. 607, 20(2004)

<u>SRN信号とspallation background</u>

<u>期待されるSRNの信号と大気ニュートリノバックグラウンド</u>

1Mton-yr w/o N-Tagging

Black: Relic SN + Inv. μ + Atm. ν_{e} Red: Inv. μ + Atm. $\overline{\nu}_{e}$ Green: Inv. μ Blue: Atm. $\overline{\nu}_{e}$

Possibilities of $\overline{\nu_e}$ tagging

Positron and gamma ray vertices are within ~50cm.

Possibility 1 $n+p \rightarrow d + \gamma$ 2.2MeV γ -ray $\Delta T = \sim 200 \mu sec$ Nhit= ~ 6 for 40% coverage(assuming 20% peak QE)

<u>Possibility 2</u> n+Gd →~8MeV γ ΔT = several 10th μsec

\overline{v}_{e} can be identified by delayed coincidence.

$\overline{v}_{\underline{e}}$ identification: possibility 1

Number of Cherenkov photons from 2.2MeV γ (wavelength range: 300-700 nm)

<u>Assuming:</u>

40% photocoverage, peak QE 20 %, (average is ~10% for 300-700nm) Nhit is about 6 hits.

Timing of those hits are same timing.

Note that we know the vertex position from the primary e⁺ signal.

If we can make photo-sensors with higher QE or increase photocoverage, it could improve the detection of 2.2 MeV γ .

<u>PMT dark noise for 2.2MeV γ tagging</u> <u>Criteria:</u>

- >= 4 PMT hits within 10 nsec from the vertex.
- Search window 400 micro sec.

$\overline{v}_{\underline{e}}$ identification: possibility 2

J.Beacom and M.Vagins, Phys.Rev.Lett.93:171101,2004

~0.2% $GdCl_3$ solution. Detect neutrons by $Gd(n,\gamma)Gd$ reaction. Visible energy in water

N.I.M. A357, 157-169(1995)

Higher light yield.

Questions: water transparency, how to operate water purification system.

<u>期待されるSRNの信号と大気ニュートリノバックグラウンド</u>

<u>中性子タグなし</u>

<u>中性子タグあり</u> (inv.µのBGが1/10となると仮定)

detection Eff.=80 %

<u>中性子発生を伴う核破砕バックグラウンド</u>

m.w.e.=meter water equivalent = ~2.7 x 深さ(m)

		SK					
		0	100	0 200	00	30	00 m.w.e.
陽子崩壊 p → e ⁺ π ⁰	宇宙線 μ 粒子による装置の 死時間。		→ 10	00~500 mwel	以上		
陽子崩壊 p → vK⁺	prompt gammaに対するバッ クグラウンド。				_		
大気∨	宇宙線 <i>μ</i> 粒子による装置の 死時間。		→ 1	00~500 mwe	以上		
加速器∨	ビーム同期があるので、浅く ても可。						
⁸ B太陽v	宇宙線起源の核破砕バックグ ラウンドが問題。(BGによる 統計誤差により見積もり)						SKレベル 以上
超新星∨ バースト	stop μの崩壊電子の頻度と銀 河内超新星の信号とを比較。	┝	~300) mwe以上			
超新星∨ relic	核破砕による中性子発生を伴 うバックグラウンド。(*)						•
(*)	グを相定						

(*) 中性子タグを想定。

	<u>全観測量, サ</u>		<u>イズに</u>	対す	-3	<u>条(</u>	生 ⊾	∕lton•year
		((5 1 (0.5) (1))	(2	2)	4	0 4 Mton)
陽子崩壊 p → e⁺π ⁰	3σ発見レベル。(Tight momentum cutの場合)		5x10^{34}4		10^{	_{(趙} 35}年	新星いバ	ーストに対して) 2x10^{35}年
陽子崩壊 p → ∨K⁺	3σ発見レベル。 (Prompt gamma解析。)		10^{34} ±			2x10^{	34}年	
大気∨	θ13の決定精度 mass hierarchyの決定精度 θ23 octantの決定精度		2Mt・YrでCHOOZの 2Mt・YrでCHOOZの 2Mt・Yrで sin ² θ23-0.	1/7 0.5倍レベル 5 < 0.05~0.	1	CHOOZの Study中 <0.01~0.0	1⁄75 3 ((sin ² θ23=0.5) (sin ² θ23=0.5) θ13 @ CHOOZ)
加速器∨	CP phaseの感度。		4MW, 0.5Mto error (2~5% 強度、ビーム間	n FV、v_) でlimitさ 時間を少な	μ 2年 れる。 にくでき	、v_µ_b; (サイズ; る。)	ar7年で が増え:	€systematic れば、ビーム
⁸ B太陽v	Day/night asymmetryによる ∆m ₁₂ ²の測定。		Systematic eri の有限値。kan	or が重要 LANDと	長。0.5 の比較	%sysない なのためI	らば1M には更	tonで3ヶ こ下げる。
超新星∨ バースト	10kpcでのバースト。 近傍銀河でのバースト。(3イ ベント以上を要求)		1SN/~10yr	v _e p信号	322万	、電子散 ~4Mp	₹乱1万 c (1SN	イベント /~4yr)
超新星∨ relic	10MeV以上でスペクトルを測 定し、モデルと比較する。		1000イベン	トの信号			5000-	ベント

光検出器に対する条件

		1	0 2	0	4	.0 (%)		
	<u>光電面被覆率</u>							
			Sk	K-11	S	K-I, SK-III		
陽子崩壊 p → e⁺π ⁰	全質量, 全運動量カットで大 気vを落とす時の分解能。							
陽子崩壊 p → ∨K⁺	6.3MeVのprompt gammaを 捉える効率。		20%被覆率 検出効率が	にすると 約半分。				
大気v	粒子識別、エネルギー分解能、 角度分解能からの要請。				(もっと	下げてもい	い か	は要study)
加速器∨	e/π ⁰ 分離、ニュートリノエネル ギー分解能。		見積中。					, , , , , , , , , , ,
⁸ B太陽v	4-5MeVのエネルギーしきい 値で観測。						(3MeV?)
超新星∨ バースト	v _e p以外に電子散乱、中性カ レントガンマもみるかによって 異なる。		√ _e p	のみ	電	子散乱、NC	γŧ	見る
超新星∨ relic	中性子タグを行う方法による。 2.2MeVを見るなら高い必要 がある。(詳細は検討中)				Gd	によるタグ	r	p(2.2MeVγ)

<u> 光検出器に対する条件(その他)</u>

- Dark noise rateについて
 - 大気v、陽子崩壊、加速器vにおける粒子識別、リング数 計測からの要請から10kHz以下。(cf. 20インチPMTは、 3.5kHz)
 - 超新星背景ニュートリノで中性子をnp反応のガンマ線 (2.2MeV)を使って同定するには~0.5kHz以下である必 要がある。
- <u>量子効率</u>
 - 観測される光電子数は、量子効率と光電面被覆率の積 なので、量子効率が上がれば被覆率が低くてもよくなる。
 ただし、granularityについてstudyが必要。

<u>中性子タグ</u>

		意味無し	ご利益ある かも?	必須
陽子崩壊 p → e ⁺ π ⁰	大気ニュートリノのバックグラ ウンドを減らせる可能性有り。			
陽子崩壊 p → vK⁺	大気ニュートリノのバックグラ ウンドを減らせる可能性有り。			
大気∨	_{νμ} ,⊽ _μ を分け,mass hierarchy の決定に役立つか?		● (?) Mul 中性	ii-GeV v interactionで 子が放出されるか?
加速器∨	¯ _{ve} +p→e ⁻ +nの信号に対してn を要求してBGを下げる。			
⁸ B太陽v	見る反応が電子散乱であり、 BGは通常nを伴わない。			
超新星∨ バースト	電子散乱と _{ve} +pの識別。 4Mpcまで見るには必須。			
超新星∨ relic	核破砕やinvisible μのBGを 除去するためには必須。			

注意: Gdを使う場合には、水の透過率、材料の腐食についてスタディが必要。

<u>国際競争</u>

陽子崩壊	外国でのproposalが出ている計画としては、
p→e⁺π ⁰	UNO実験(0.44 Mton有効体積、アメリカHenderson鉱(4000 m.w.e.))
	MEMPHYS実験(0.44 Mton有効体積、Frejusトンネル(4800 m.w.e.))
	がある。
陽子崩壊	同上。
p→vK+	ICARUS実験(液体アルゴンTPC)。ただし、5000トンでも5x10^{33}年の感度。
大気v	同上。
加速器∨	UNO実験では、FNALから(1500km)あるいはBNLから(2760km)のビーム、
	MEMPHYS実験ではCERNから(130km)のビームを計画している。
⁸ B太陽∨	UNO実験では、1/3の体積を40%光電面被覆率を考えているが、高々0.15Mton 有効体積(SKの7倍程度。)
超新星v	UNO, MEMPHYS以外に、液体シンチレーターを用いた実験としてLENA実験
バースト	(0.06Mton、ヨーロッパ)、HSD(0.1Mton、アメリカ)のプロポーザルがある。
超新星v	同上。
relic	