Don't try to teach your grandmother how to suck eggs

Don't try to teach your grandmother how to suck eggs

釈迦に説法

Density Profile of Galaxy

Density Profile of Dark Matter Halos

• Universal Density Profile (Navarro, Frenk, White 1997)

$$\left[\begin{array}{c} \rho(r) = \frac{\rho_s}{(r/r_c)(1+(r/r_c)^2)} \end{array} \right] \\ \rho \sim r^{-1} \quad (r \to 0) \quad \mbox{central density cusp} \end{array} \label{eq:rho}$$

• Moore et al (1999)

$$\begin{split} \rho(r) &= \frac{\rho_M}{(r/r_M)^{1.5}(1+(r/r_M)^{1.5})} \\ \rho &\sim r^{-1.5} \quad (r \to 0) \end{split}$$

[Moore et al MNRAS 310(1999)1147]

Improved N-body Simulation

[Hayashi et al MNRAS 355(2004)794 Navvaro et al MNRAS 349 (2004)1039 Power et al MNRAS 338 (2003) 14]

Central Cusp ?

Simulation with higher resolution

Disagreement with rotation curves of LSB galaxies ?

- Obs. improvement (long slit Hα observation)
- Directly compared LSB rotation curves with simulations

Criteria for numerical convergence

 Particle collisions lead to changes of O(1) in energy in relaxation timescale

 $\begin{array}{c} & & \\ & & \\ & & \\ F_{\perp} \end{array} \end{array} \overset{k}{=} \dot{F_{\perp}} = \frac{Gm^{2}b}{(b^{2} + x^{2})^{3/2}} \simeq \frac{Gm^{2}}{b^{2}} \left[1 + \left(\frac{vt}{b}\right)^{2} \right] \end{array}$ $\implies |\delta v_{\perp}| \sim \frac{Gm}{h_{2}}$ Per one orbit time $\Delta v_{\perp}^2 \sim \int_{-\infty}^{r} \delta v_{\perp}^2 \frac{N}{r^2} b db \sim N(r) \left(\frac{Gm}{rv}\right)^2 \ln(r/\epsilon) \sim \frac{1}{N} \ln(r/\epsilon) v^2$ **Relaxation time-scale** $t_{\rm relax}(r) \sim (v^2 / \Delta v_{\perp}^2) t_{\rm circ}(r) \sim \frac{N(r)}{\ln(r/\epsilon)} t_{\rm circ}(r) \qquad v^2 \sim \frac{GNm}{r}$

 $| t_{\text{relax}}(r) > t_0$

Density profile : NFW vs Moore et al

Navvaro et al MNRAS 349 (2004)1039

Rotaion curve : NFW vs Moore et al

Navvaro et al MNRAS 349 (2004) 1039

Slope of the density profile

No indication for convergence to a well-defined aymptotic value

LSB rotation curve shape

Hα rotation curve data set (67 galaxies)

and simulated 266 halos

$$V(r) = \frac{V_0}{(1 + (r_t/r)^{\gamma})^{1/\gamma}}$$

 $\begin{array}{l} \mathsf{NFW}: \gamma \simeq 0.6 \\ \mathsf{ISO}: \gamma \simeq 2 \end{array}$

A. Best fit

• χ^2 fit to

 $r_t > 0 \quad 0 \le \gamma \le 5 \quad V_0 \le 2V_{\max}$

B. ACDM fit $r_t > 0$ $0 \le \gamma \le 1$ $V_0 \le 2V_{\text{max}}$ $|\log \Delta_{1/2} - \log \Delta_{1/2,\text{CDM}}| \le 0.7$ $\Delta_{1/2} = \bar{\rho}(r_{V_{1/2}})/\rho_{\text{crit}}$

Rotation curves of LSB galaxies

V (km/s)

Distribution of $\boldsymbol{\gamma}$

- 70% of LSB galaxies are consistent with CDM
- 20% have irregular rotation curves
- 10% is inconsistent with CDM (most of their rotation curves do not extend large enough radii)

CDM is not inconsistent with LSB rotation curve

 $\Sigma(R) = \Sigma_0 \exp(-R/R_d)$

- Adiabatic contraction of halo
 - Spherical as it contracts
 - angular momentum conservation

Density profile of our Galaxy

- NFW halo density profile
- Klypin, Zhao, Somerville ApJ 573 (2002) 397
- three components (nucleus, bulge, disk)
- adiabatic contraction
- with/without angular momentum exchange

Mass distribution

Supernova Rate

Supernova rate

- Type I no hydrogen line
 - la silicon line
 - Ib no silicon line, helium line
 - Ic no silicon line, w/wo weak helium line
- Type II hydrogen line

Light curve SN & SN type

$$SNR = \frac{N_{SN}}{\sum_{j=1}^{N_G} \Delta t_j L_j}$$

$$\Delta t_i : \text{ obs. time}$$

$$L_i : j - \text{th galaxy luminosity}$$

$$N_{SN}$$
 : num. of discovered SN

The Present SN rate

[Mannucci et al A&A 433(2005)807]

Type	Ngal	Ia	Ib/c	II
E/S0	2048	21.0	0	0
S0a/b	2911	18.5	5.5	16.0
Sbc/d	2682	21.4	7.1	31.5
Irr	644	6.8	2.2	5.0

Type	Ia	Ib/c	II		
SN rate per K-band luminosity (SNuK)					
E/S0	$0.035\substack{+0.013\\-0.011}$	< 0.0073	< 0.10		
S0a/b	$0.046\substack{+0.019\\-0.017}$	$0.026\substack{+0.019\\-0.013}$	$0.088^{+0.043}_{-0.039}$		
$\rm Sbc/d$	$0.088\substack{+0.035\\-0.032}$	$0.067^{+0.041}_{-0.032}$	$0.40\substack{+0.17 \\ -0.16}$		
Irr	$0.33_{-0.13}^{+0.18}$	$0.21\substack{+0.26 \\ -0.14}$	$0.70\substack{+0.57 \\ -0.43}$		
SN rate per Mass (SNuM)					
E/S0	$0.044\substack{+0.016\\-0.014}$	< 0.0093	< 0.013		
S0a/b	$0.065\substack{+0.027\\-0.025}$	$0.036\substack{+0.026\\-0.018}$	$0.12\substack{+0.059\\-0.054}$		
$\rm Sbc/d$	$0.17\substack{+0.068\\-0.063}$	$0.12\substack{+0.074 \\ -0.059}$	$0.74_{-0.30}^{+0.31}$		
Irr	$0.77\substack{+0.42 \\ -0.31}$	$0.54_{-0.38}^{+0.66}$	$1.7^{+1.4}_{-1.0}$		

SN rate of our Galaxy Our Galaxy : Sbc **lb/c + ll** $0.46 \pm 0.17 h_{75}^2$ SNuK $L_K = 8.9 \times 10^{10} L_{\odot}$ SN rate = $4.1 \pm 1.5 \ h_{75}^2 / (100 \text{yr})$ $= 1/[(24 \pm 9) h_{75}^{-2} \text{ years}]$

Core Colapse SN rate

- E/S0 : Sa/b : Sbc/d: Irr = 0.32 : 0.28 : 0.34 : 0.06
- core collapse SN = SN lb/c + SN ll

$$\Rightarrow (CC SNR) = (0.44 \pm 0.13)h^2 SNuK$$

SNuK = 1/(100yr)/(10¹⁰L_{K,☉})
K-band luminosity density
 $j = (7.14 \pm 0.75) \times 10^8 h L_{K,☉} Mpc^{-3}$

$$R_{SN} = (3.11 \pm 0.96) \times 10^{-4} h^3 \text{ yr}^{-1} \text{Mpc}^{-3}$$
$$= (1.21 \pm 0.37) \times 10^{-4} \text{ yr}^{-1} \text{Mpc}^{-3}$$

Star Formation Rate (SFR)

- Salpeter Initial Mass Function (IMF) $\phi(M) = \begin{cases} \frac{1}{3.532M_{\odot}} \left(\frac{M}{M_{\odot}}\right)^{-1.35} & (M \ge 0.1 \ M_{\odot}) \\ 0 & (M < 0.1 \ M_{\odot}) \end{cases}$
- From SFR to SN rate

• From Local SN rate to SFR (z=0) $\psi(t) = 1.347 \times 10^2 M_{\odot} \ R_{SN}$

 $\log[\psi(z=0)/(M_{\odot} \mathrm{yr}^{-1} \mathrm{Mpc}^{-3})] = -1.79 \pm 0.15$

H α log[$\psi(z=0)/(M_{\odot} \text{yr}^{-1} \text{Mpc}^{-3})$] = -1.79^{+0.13}_{-0.07}(stat) ± 0.03(sys)

[Hanish et al astro-ph/0604442]

Observations of SFR

High star formation rate

large UV flux

 $\begin{aligned} {\sf SFR} &= L_{{\sf H}\alpha}/(1.25\times 10^{34}~{\sf W}) \\ {\sf SFR} &= L_{{\sf UV}}/(7.14\times 10^{20}~{\sf W}~{\sf Hz}^{-1}) \\ {\sf SFR} &= L_{{\sf FIR}}/(2.22\times 10^{36}~{\sf W}) \\ {\sf SFR} ~{\rm in~units~of}~M_{\odot}{\sf yr}^{-1} \end{aligned}$

Evolution of SFR

IMF: Salpeter+GBF

SFR evolution

[Hopkins ApJ 615 (2004) 209]

GW Test of Gravitational Theory

Test of Gravitational Theory

metric theory of gravity \longrightarrow non-gravitational fields respond only to the spacetime metric g

• Einstein gravity

$$I = \frac{1}{16\pi G} \int R(-g)^{1/2} d^4 x + I_m(\psi_m, g_{\mu\nu})$$

$$I = \frac{1}{16\pi G} \int \left[\phi R - \frac{1}{\phi} \omega(\phi) g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \phi^2 V \right] (-g)^{1/2} d^4 x + I_m(\psi_m, g_{\mu\nu})$$

Brans-Dicke $\omega = \text{const}, V = 0$

 $\begin{array}{ll} \mbox{PPN} \\ \mbox{parameters} \end{array} & \gamma = \frac{1+\omega}{2+\omega} \\ \end{array} & \beta = 1+\Lambda = 1 + \frac{d\omega/d\phi}{(3+2\omega)^2(4+2\omega)} \end{array}$

Post Newtonian Gravity Einstein gravity Oder of smallness $U \sim v^2 \sim \epsilon$ $\gamma = \beta = 1$ Metric $g_{00} = -1 + 2U - 2\beta U^2 + (2\gamma + 2)\Phi_1 + 2(3\gamma - 2\beta + 1)\Phi_2 + O(\epsilon^3)$ $g_{0i} = -\frac{1}{2}(4\gamma + 3)V_i - \frac{1}{2}W_i + O(\epsilon^{5/2})$ **Brans-Dicke** $\gamma = (1+\omega)/(2+\omega)$ $g_{ij} = (1 + 2\gamma U)\delta_{ij} + O(\epsilon^2)$ $\beta = 1$ **Metric Potential** $U = \int \frac{\rho'}{|\mathbf{x} - \mathbf{x}'|} d^3 x' \quad \Phi_1 = \int \frac{\rho' v'^2}{|\mathbf{x} - \mathbf{x}'|} d^3 x' \quad \Phi_2 = \int \frac{\rho' U'}{|\mathbf{x} - \mathbf{x}'|} d^3 x'$ $V_{i} = \int \frac{\rho' v_{i}'}{|\mathbf{x} - \mathbf{x}'|} d^{3}x' \qquad W_{i} = \int \frac{\rho' [\mathbf{v}' \cdot (\mathbf{x} - \mathbf{x}')] (x - x')_{i}}{|\mathbf{x} - \mathbf{x}'|^{3}} d^{3}x'$
Constraint on γ

Deflection of light 1.10 Radio **Optical** VLBI obs. of QSOs and radio 1.05 galaxies 1.00 $\gamma - 1 = (-1.7 \pm 4.5) \times 10^{-4}$ $(1+\gamma)/2$ Time delay of light 1.05 **SHAPIRO** TIME Cassini spacecraft DELAY 1.00 $\gamma - 1 = (2.1 \pm 2.3) \times 10^{-4}$ 0.95 1920 1940 1960 1970 $\rightarrow \omega > 40000$

YEAR OF EXPERIMENT

Gravitational Wave tests of Gravitational Theory

polarization of gravitational waves Scalar-tensor theory 2 quadrupolar + 1 monopolar modes (a) 3 modes + 2 direction cosines = 5 unknowns 5 detectors determine polarization (c)

Gravitational Wave tests of Gravitational Theory

gravitational radiation back-reaction
 Scalar-tensor theory

 \Rightarrow Quadrupole + dipole radiation

 \Rightarrow change of motion of binary system

 \Rightarrow change of phase

Fourier transform of waveform

$$\tilde{h} = \frac{\sqrt{3}}{2} \mathcal{A} f^{7/6} e^{i\psi(f)} \qquad G = 1$$
$$\mathcal{A} = \frac{1}{\sqrt{30}\pi^{3/2}} \frac{\mathcal{M}^{5/6}}{D_L} \qquad \mathcal{M} = \eta^{3/5} (m_1 + m_2)$$
$$\eta = m_1 m_2 / (m_1 + m_2)^2$$

phasing function

BH-NS binary is the best

LISA BD bound [Berti, Buonanno, Will, PRD71 (2005) 084025]

2PN, SNR = 10, 1 year observation time

TABLE IV. Errors and correlation coefficients in Brans-Dicke theory using 2PN templates, with and without the spin-orbit term. We consider one detector and set $\rho = 10$. In the first row we do not consider spin terms; in the second row we also include spin-orbit effects. When we include the spin-orbit term priors do not have an appreciable effect on parameter estimation. For each binary we also give the bound $\omega_{BD,unc}$ that could be obtained (in principle) if all the binary parameters were known and not correlated with the BD term.

$\overline{\Delta t_c}$ (s)	$\Delta \phi_c$	$\Delta \mathcal{M}/\mathcal{M} \ (\%)$	$\Delta \eta/\eta \ (\%)$	$\omega_{ m BD}$	Δeta	$c^{\mathcal{M}\eta}$	$c^{\mathcal{M} \varpi}$	$c^{\mathcal{M}\beta}$	<i>د</i> ^{<i>η ज</i>}	$c^{\eta\beta}$	$c^{\varpi\beta}$
$(1.4 + 400)M_{\odot}, \omega_{\rm PD, unc} = 43057645$											
3.82	23.2	0.000 243	0.293	765014		-0.939	0.421	•••	-0.705	• • •	•••
7.95	76.7	0.00657	2.50	39 190	0.0508	-0.997	-0.997	0.999	0.988	-0.993	-0.999
$(1.4 + 1000)M_{\odot}, \omega_{\text{BD.unc}} = 21602414$											
3.79	16.7	0.000 189	0.116	211 389	• • •	0.845	-0.984	•••	-0.926	• • •	• • •
7.99	58.4	0.00764	1.86	21 257	0.0557	-0.996	-0.997	1.000	0.987	-0.998	-0.995
$(1.4 + 5000)M_{\odot}, \omega_{\rm BD,unc} = 6388639$											
4.60	12.5	0.000 600	0.0342	50925	• • •	0.970	-0.998	•••	-0.955	•••	• • •
8.79	23.4	0.0114	1.33	6486	0.0550	-0.997	-0.997	0.999	0.988	-1.000	-0.992
$(1.4 + 10^4)M_{\odot}, \omega_{\rm BD,unc} = 3768347$											
6.59	13.8	0.000 877	0.0253	26 4 26	• • •	0.979	-0.998	•••	-0.963	•••	•••
13.6	15.5	0.0178	1.61	3076	0.0706	-0.998	-0.998	0.999	0.991	-1.000	-0.993

Spin-Orbit term reduces BD bound

High Energy Neutrino

High Energy Neutrino

- Cosmogenic neutrino $p + \gamma_{\rm CMB} \rightarrow \pi + \cdots \rightarrow \nu + \cdots$
- Waxman and Bahcall

optically thin to protons $E_{\nu}^2 dN_{\nu}/E_{\nu} \simeq 10^{-8} \text{ GeV} (\text{cm}^2 \text{ s sr})^{-1}$

• EGRET bound

optically thick to proton but thin to $\gamma \sim WB \times 40$

- Hidden source
- Top down (decay of superheavy particles...)

Ultra-high energy cosmic neutrino spectrum

Anchordoqui et al hep-ph/0508321

Black Hole Formation in TeV Gravity Large Extra Dimension

Gravitational Force

$$\implies (4\pi G_N)^{-1} = R^n M_*^{n+2}$$
$$M_* = 1 \text{ TeV} \implies R \sim 10^{\frac{30}{n} - 17} \text{ cm}$$

$$\begin{array}{ll} n=2 & R\sim 1 \mathrm{mm} \\ n=7 & R\sim 10^{-13} \mathrm{mm} \end{array}$$

Earth-skimming tau spectrum at Auger

$u_{\mu} + \bar{\nu}_{\mu}$ events in IceCube

[Alvarez-Muniz et al PRL 88 (2002) 021301]

Schwarzshild Radius in (4+n) dim.

gravitaional potential

$$U_{4+n}(r) \sim \frac{1}{M_*^{2+n}} \frac{M}{r^{n+2}}$$

Equating kinetic energy of a particle moving at the speed of light,

$$\frac{1}{2}mc^2 \sim \frac{mM}{M_*^{n+2}r^{n+1}} \square > R_s \sim \frac{1}{M_*} \left(\frac{M}{M_*}\right)^{\frac{1}{n+1}}$$

1

$$R_s = \frac{1}{M_*} \left[\frac{M}{M_*} \left(\frac{2^{n+1} \pi^{(n-3)/2} \Gamma((n+3)/2)}{n+2} \right) \right]^{\frac{1}{n+1}}$$

Cross Section
Parton-neutrino cross section

$$\sigma(i\nu \rightarrow BH) \simeq \pi R_s^2(xs) \ i :$$
i-th parton
 $s = 2m_N E_{\nu}$ $R_s :$ Schwarzshild radius
 $\sigma(N\nu \rightarrow BH) = \sum_i \int_{M_{(BH,min)}^2/s}^1 dx \ \sigma(i\nu\nu \rightarrow BH) f_i(x)$
 $f_i(x) :$ parton distribution function (PDF)
 $x_{\min} \equiv M_{B,\min}/M_*$
 \longleftrightarrow SM Process $\nu N \rightarrow \ell N$
 $\sigma_{BH} \gg \sigma_{SM}$ for high energy neutrino

n = 6 $(M_*, x_{\min}) = (1 \text{TeV}, 1) (1 \text{TeV}, 3) (2 \text{TeV}, 1) (2 \text{TeV}, 3)$

Hawking Radiation

• Temperature

$$T_H = M_* \left(\frac{M_*}{M_{BH}} \frac{n+2}{2^{n+1}\pi^{(n-3)/2}\Gamma((n+3)/2)}\right)^{\frac{1}{n+1}} \frac{n+1}{4\pi} = \frac{n+1}{4\pi R_s}$$

• Lifetime

$$\tau \sim \frac{1}{M_*} \left(\frac{M_{BH}}{M_*}\right)^{\frac{3+n}{n+1}} \sim 10^{-27} \sec\left(\frac{M_{BH}}{M_*}\right)^{\frac{3+n}{n+1}}$$

• Average multiplicity $\langle N \rangle \sim \langle M_{BH}/T_H \rangle$ 10 TeV BH $\Rightarrow \langle N \rangle \sim 50$

Detection

BH decay \rightarrow 10% charged leptons 75% hadronic

- Neutrino telescope (IceCube, ...) muon track, tau event
- Air shower experiments (AGASA,...) neutrino-like event

Angular distribution of muon tracks above 500TeV

[Alvarez-Muniz et al PRD65 (2002) 124015]

Showers seen by Auger (quasi-horizontal showers)

 $x_{\min} = 3$

[Anchordoqui et al hep-ph/0508312]

Showers seen by Auger (Earth skimming tau neutrino)

FIG. 13: The spectrum of Earth skimming, tau neutrino black hole induced showers as would be seen by Auger for the cosmogenic flux (left) and the Waxman-Bahcall flux (right). The dashed lines indicates different values of the fundamental Planck scale (from below $M_{10} =$ 1, 2, 3, 4, 5, 7, 10 TeV; in all cases $M_{\rm BH,min} = 3M_{10}$), while the solid line is the SM prediction.

[Anchordoqui et al hep-ph/0508312]

Inflation Models

Inflation models Inflation

- Chaotic Inflation
 - natural (no initial value problem)
 - take place at planck time
 - inflaton $\phi > M_G$
- Hybrid Inflation
 - initial value problem
 - cosmic string
- New Inflation
 - severe initial value problem
 - flatness (longevity) problem

Hubble

High Low

Flat Potential

SUSY

η problem

Chaotic Inflation in Supergravity

spectral index $n_s \simeq 0.96$

WMAP three years data

Spergel et al (2006)

Axion and Strong CP Problem

Peccei-Quinn Mechanism

Introduce U(1) and make θ dynamical variable $a \equiv F_a \theta$ $\Phi_a = |\Phi_a| e^{i\theta}$ $F_a : PQ$ scale Spontaneous symmetry breaking of U(1) at F_a $\langle \Phi_a \rangle \neq 0$ Nambu-Goldstone boson = AXION QCD instantton effect T high $m_a = 0.62 \times 10^{-5} \text{eV} \left(\frac{F_a}{10^{12} \text{GeV}} \right)^{-1}$ T=T Minimum of θ potential $T=0^{1}$ $2\pi F_a$ $\theta = 0$ 0 $4\pi F_{a}$ а Constraints on PQ scale

Astrophysics SN198A Cooling $F_a \gtrsim 10^{10} \text{ GeV}$ Cosmology (PQ after inflation) Coherent oscillation $F_a < (1-5) \times 10^{11} \text{ GeV}$ Axions from axionic strings $F_a < (2.4 \pm 1.4) \times 10^{11} \text{ GeV}$ Axions from domain walls

Yamaquchi,MK,Yokoyama PRL 82 (1999)4578

 $\implies \quad F_a \simeq (1 - 30) \times 10^{10} \text{ GeV}$

Constraints on PQ scale

• Astrophysics SN198A Cooling $F_a \gtrsim 10^{10} \text{ GeV}$ • Cosmology (PQ before inflation) • Coherent oscillation $F_a < (0.3 - 1.4) \times 10^{12} \theta^{-1.7} \text{ GeV}$

 $\implies F_a \simeq (0.01 - 1.4\theta^{-1.7}) \times 10^{12} \text{ GeV}$

Relax the cosmological bound on PQ scale MK, Moroi, Yanaqida PLB384 (1996)313 Entropy Production rightarrow dilute axions $\Omega_a h^2 \simeq 5.3 \left(\frac{T_R}{\text{MeV}}\right) \left(\frac{F_a \theta}{10^{16} \text{GeV}}\right)^2$ $\square \searrow F_a \theta < 1.6 \times 10^{15} \text{GeV} \left(\frac{T_R}{\text{MeV}}\right)^{-1/2}$

Even huge entropy production cannot dilute axions completely

PQ symmetry breaking before inflation $F_a \simeq (0.01 - 1.4\theta^{-1.7}) \times 10^{12} \text{ GeV}$ Large isocurvature fluctuations $\frac{\delta a}{a} \simeq \frac{\delta \theta}{\theta} \simeq \frac{H}{2\pi} \frac{1}{F_a \theta}$ During inflation $\begin{array}{ll} \text{After QCD phase} & \frac{\delta \rho_a}{\rho_a} \simeq 2 \frac{\delta \theta}{\theta} \simeq \frac{H}{\pi F_a \theta} \end{array}$ $H \sim 10^{10} \text{ GeV} F_a \sim 10^{12} \text{GeV} \Rightarrow \delta_a \sim 10^{-2}$ Axionic isocurvature can be observed in CBM spectrum

Isocurvature Perturbations adiabtic vs isocurvature

TT correlation: adiabatic vs isocurvature

Constraint from WMAP 1st year

Hamaguch, MK, Moroi, Takahashi (2003)

Contribution of isocurvature < 30%

Expected isocurvature fluctuations

Saxion Decay

Electron-positron pair

$$\mathcal{L} = \frac{m_e}{F_a} \bar{e} e s$$

$$\tau(s \to e^+ + e^-) \simeq 2 \times 10^{11} \text{ yr} \left(\frac{F_a}{10^{16} \text{GeV}}\right)^2 \left(\frac{m_s}{\text{MeV}}\right)^{-1}$$

two gammas

$$\tau(s \to 2\gamma) \simeq \left(\frac{\alpha^2}{256\pi^3} C \frac{m_s^3}{F_a^2}\right)^{-1}$$
$$\simeq 3 \times 10^{17} \text{yr} C^{-2} \left(\frac{F_a}{10^{16} \text{GeV}}\right)^2 \left(\frac{m_s}{\text{MeV}}\right)^{-3}$$

$$C \sim O(1)$$

511 keV Gamma Ray from Saxion Decay

Recent INTEGRAL/SPI obs. 511keV line from Galactic bulge

$$\Phi_{511} = 1.05 \pm 0.06 \times 10^{-3} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

50 significance

Knödlseder et al (2005)

Saxion decay

$$\Omega_{s} \simeq \left(\frac{\Phi_{511}}{10^{-3} \text{cm}^{-2} \text{sec}^{-1}}\right) \left(\frac{\tau_{s}}{10^{27} \text{sec}}\right) \left(\frac{m_{s}}{\text{MeV}}\right)$$
$$\simeq 6 \times 10^{-9} \left(\frac{\Phi_{511}}{10^{-3} \text{cm}^{-2} \text{sec}^{-1}}\right) \left(\frac{F_{a}}{10^{16} \text{GeV}}\right)^{2}$$

Line Gamma 2 gamma flux is normalize to the e⁺e⁻flux observed by INTEGRAL resolution =0.001, 0.08, 0.13

Kasuya, MK PRD73 (2006) 063007

Evidence for entropy production

 $f \sim 1 \text{Hz} \Rightarrow T \sim 3 \times 10^6 \text{ GeV}$

Seto, Yokoyama J.Phys.Soc.Jpn 72 (2003) 3082

$$\rho_{\rm GW}(f,a) = \frac{M_G^2 h^2(f,a)}{2} \left(\frac{2\pi f a_0}{a}\right)^{-1} h \simeq 10^{-18} \Omega_{\rm GW}^{1/2} \left(\frac{f}{\rm Hz}\right)^{-1}$$

Seto, Kawamura, Nakamura PRL 87 (2001) 221103