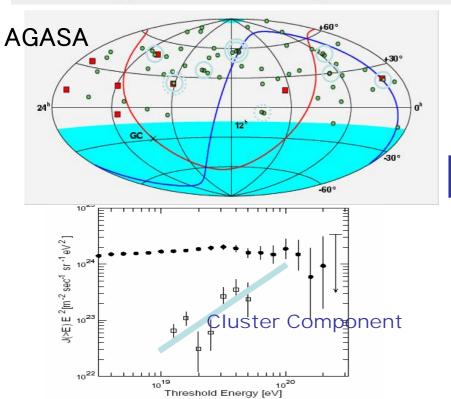

EHECR到来方向による 荷電粒子天文学

戎崎俊一 理研

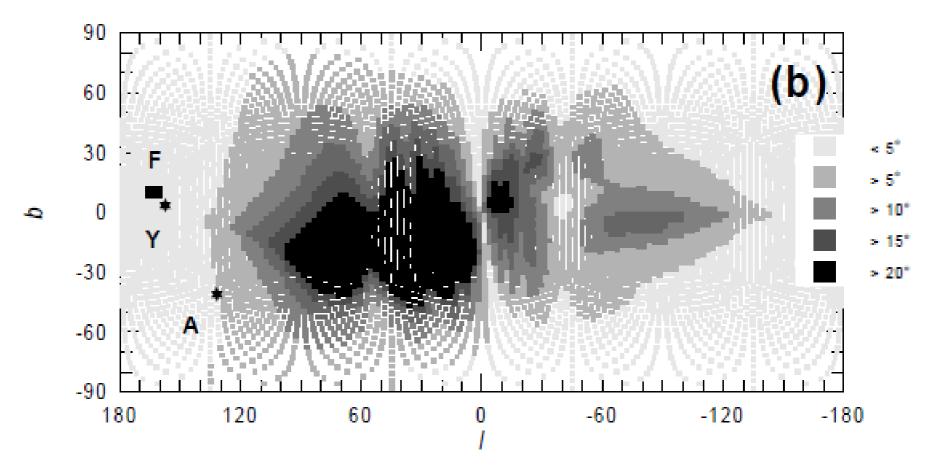
EHECR到来方向分布による 天文学

- 10²⁰eV陽子は銀河磁場では曲がらない
 - <1度(銀河中心方向)
- 到来方向が直接わかる→荷電粒子天文学
 - 10¹⁹eV以下では、到来方向が分からない
 - 4×10¹⁹eVでも銀河中心方向では10度も曲がる
 - クラスタ検出は無理
- 大局的分布: 双極子成分
 - 1000イベントを使えば数%程度の精度で決定
 - 南北に偏らない露出
- 局所的なクラスタ
 - 数十個の点源の存在を確認
 - 銀河磁場の絶対値の直接決定


荷電粒子による天文学と伝播空間の物理学

10²⁰eV以上ではproton は銀河磁場でほとんど曲 がらない

荷電粒子天文学!


- 2,000事象以上: E>4x10¹⁹eV
- 最大60~70のクラスターの発見が期待される
- 全天を観測することができる

陽子(4×10¹⁹eV)の銀河磁場による 偏向

Medina Tanco et al. 1997 Astrp-ph/9707041

鉄(2.5×10²⁰eV)の銀河磁場による 偏向

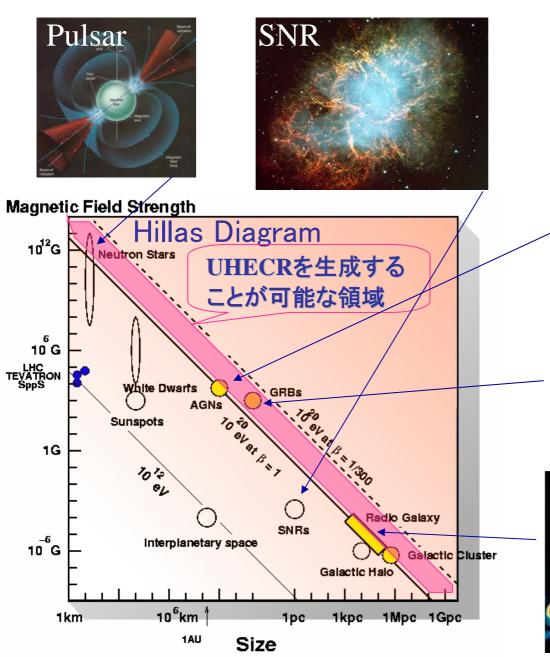
Medina Tanco et al. 1997 Astrp-ph/9707041

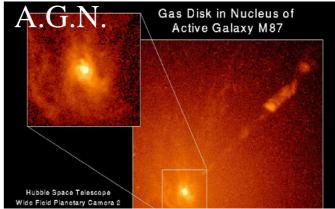
JEM/EUSO: Auger

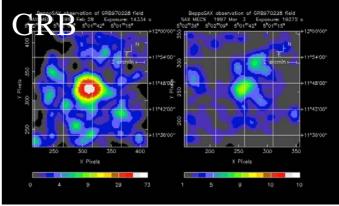
- 超10²⁰eVイベント数(5 年:tiltモード)
 - 25, 000 events (super GZK case)
 - 2, 500 events (GZK case)
- 全天に対して一様な露出

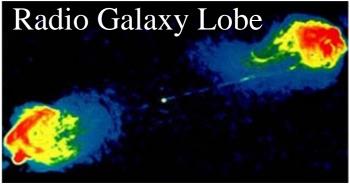
- 超10²⁰eVイベント数 (10年)
 - 1, 000 events(super GZK case)
 - 100 events(GZK case)
- 銀河中心方向に集中した露出
 - Zone of Avoidance
 - 磁場が強い

宇宙ステーションに取り付けられる 予定のEUSO望遠鏡


EUSO望遠鏡は2012年頃に国際宇宙ステーションの 日本実験棟船外実験プラットフォーム(JEM/EF)に装着される計画である。






Vertical Mode Tilted Mode

極限エネルギー宇宙線を生成できる候補天体

到来方向分布まとめ

- 点源分布と双極子異方性で超高エネルギー宇宙線の起源は特定される
- E>10²⁰eVであることが重要
 - E<1020eVでは銀河磁場の偏向が無視できない
 - Augerは銀河磁場が強い方向を見ている
- 全天に一様な露出が重要
 - 地上施設では双極子異方性を決められない
 - 半分の空しか見えない
 - エネルギー決定の系統的誤差の較正が難しい
- 銀河磁場の直接測定

EUSO!