The AMS detector: a particle physics experiment in space

ALPHA Magnetic Spectrometer

Roberto Battiston University and INFN of Perugia

International Workshop on Energy Budget in the High Energy Universe ICRR Tokyo February 21st 2006

The universe is the ultimate laboratory to study fundamental physics.....

.....reaching energies which cannot be studied at accelerators......

High Energy Cosmic Rays in the Universe

Messengers are photons, charged/neutral particles, gravitational waves.....

^{264 2}f/5

The purpose of the AMS experiment is to perform accurate, high statistics, long duration measurements in space of

- energetic (0.1 GV - few TV) charged CR

- energetic (>1 GeV) gamma rays.

AMS is a particle physics experiment:

Alpha Magnetic Spectrometer - AMS-01

First flight, STS-91, 2 June 1998 (10 days)

PHYSICS REPORTS

A Review Section of Physics Letters

THE ALPHA MAGNETIC SPECTROMETER (AMS) ON THE INTERNATIONAL SPACE STATION: PART I – RESULTS FROM THE TEST FLIGHT ON THE SPACE SHUTTLE

M. AGUILAR et al. (AMS Collaboration)

NORTH-HOLLAND http://www.elsevier.com/locate/physrep AST ISSUE OF THIS VOLUME

264 2f/9

lb02K064

Magnetosphere effects

AMS has flown in space during a period of solar maximum

At low energy (below cutoff, up to R \sim 15 GeV) latitude dependence and solar modulation influence the spectra

At high energy (above R~ 20 GeV) the measurement of the primary flux should give the same result in experiments performed at similar solar activities (LEAP, IMAX, CAPRICE, BESS, AMS)

264 2f/11

International Space Station

February 2006

Final configuration

AMS is an International Collaboration

NASA provides: Three shuttle flights and Mission Management at JSC S. C.C. Ting - Spokesperson

MIT - CAMBRIDGE NASA GODDARD SPACE FLIGHT CENTER NASA JOHNSON SPACE CENTER UNIV. OF MARYLAND-DEPT OF PHYSICS UNIV. OF MARYLAND-E.W.S. S.CENTER YALE UNIV. - NEW HAVEN

MEXICO

UNAM

USA

A&M FLORIDA UNIV

JOHNS HOPKINS UN

DENMARK UNIV. OF AARHUS

FINLAND

Helsinki Univ. Univ. of Turku

FRANCE

GAM MONTPELLIER LAPP ANNECY LPSC GRENOBLE

GERMANY RWTH-I RWTH-III

MAX-PLANK INST. UNIV. OF KARLSRUHE

TALY

ASI CARSO TRIESTE IROE FLORENCE INFN & UNIV. OF BOLOGNA INFN & UNIV. OF MILANO INFN & UNIV. OF PERUGIA INFN & UNIV. OF PISA INFN & UNIV. OF ROMA INFN & UNIV. OF SIENA

NETHERLANDS

ESA-ESTEC NIKHEF NLR PORTUGAL

LAB. OF INSTRUM. LISBON

ROMANIA

ISS UNIV. OF BUCHAREST RUSSIA I.K.J. ITEP KURCHATOV INST. MOSCOW STATE UNIV.

SPAIN

CIEMAT - MADRID I.A.C. CANARIAS.

SWITZERLAND

ETH-ZURICH UNIV. OF GENEVA

CHINA BISEE (Beijing) IEE (Beijing) IHEP (Beijing) SJTU (Shanghai) SEU (Nanjing) SYSU (Guangzhou) SDU (Jinan)

ACAD. SINICA (Taiwar CSIST (Taiwan) NCU (Chung Li) NCKU (Tainan) NCTU (Hsinchu) NSPO (Hsinchu)

KOREA EWHA KYUNGPOOK NAT.UNIV.

Harden and A

 $dP/P^2 \sim 0.004 \rightarrow MDR = 2.5 \text{ TV}, h/e = 10^{-6} (ECAL + TRD)$

TRD measures electrons

AMS-02 spectrometer

- Acceptance for charged CR: 0.5 m²sr
- Exposure: at least 3 years (from 2008)
- Charge:

Z determination up to Z = 26

charge confusion < 10⁻⁷ @ Z=1 & < 10% @ Z>10

- Rigidity (R=p/Z):
 σ(R)/R = 1.5% @ 10 GV, Max Detectable Rigidity > 2-3 TV
- Velocity (β): TOF: $\sigma(\beta)/\beta = 3.5\%$ (protons) RICH: $\sigma(\beta)/\beta = 0.1\%$ (protons)

Expected data statistics for AMS on ISS

Above	> 1 GeV/c	>5 GeV/c	>10 GeV/c	>100 GeV	> 1 TeV
Protons			6.1 x 10 ⁹	1.5 x 10 ⁸	2.5 x 10 ⁶
Electrons	1.4 x 10 ⁸	7.3 x 10 ⁷	6.8 x 10 ⁶	7.2 x 10 ⁴	5.4 x 10 ²
Positrons	9 x 10 ⁶	3.8 x 10 ⁶	3 x 10 ⁵	1.6 x 10 ³	6
Antiprotons	1.5 x 10 ⁶	1.1 x 10 ⁶	1.4 x 10 ⁴	3.2 x 10 ³	5.8 x 10 ²
Helium	6.4 x 10 ⁸	4.3 x 10 ⁸	2.1 x 10 ⁸	7.3 x 10 ⁶	1.7 x 10 ⁵

AMS-02 goals and capabilities

Cosmic rays spectra and chemical composition up to 1 TeV

Search for Antimatter in Space

Search for Dark Matter

AMS will identify and measure the fluxes for:

- p for E < 1 TeV with unprecedented precision
- e+ for E < 300 GeV and e– for E < 1 TeV (unprecedented precision)
- Light Isotopes for E < 10 GeV/n
- Individual elements up to Z = 26 for E < 1 TeV/n

Absolute fluxes and spectrum shapes of protons and helium are important for calculation of atmospheric neutrino fluxes

Composition and spectra are important to constraint propagation, confinement, ISM density

Protons and helium

- AMS will measure H & He fluxes for E < 1 TeV
- after 3 years will collect $\approx 10^8$ H with E > 100 GeV
- and $\approx 10^7$ He with E > 100 GeV/n

Electrons and positrons

Energetic e+/e- cannot diffuse more than few kpc: they are sensitive probes of the Local Bubble and its neighbourhood.

Heavier nuclei

- AMS will measure the flux of $Z \le 26$ for E < 1 TeV/n
- The secondary to primary ratio B/C is used to fit the CR diffusion parameters
- After 3 years will collect ≈10⁵ Carbon with E > 100 GeV/n and ≈10⁴ Boron with E > 100 GeV/n

Nuclei separation

Charge measurement:

TOF, Tracker and RICH

Verified by heavy ion beam tests at CERN & GSI.

Light isotopes

Hydrogen and helium isotopes (deuterium and ³He) are important tests of Big Bang nucleosynthesis which is their main source.

AMS-02 will identify D and ³He up to 10 GeV/n

After 3 years AMS-02 will collect about 10⁸ D and ³He

¹⁰Be/⁹Be – radioactive clock

- ¹⁰Be ($t_{1/2} = 1.51$ Myr) is the lightest β -radioactive secondary isotope having a half-life comparable with the CR confinement time in the Galaxy.
- In diffusion models, the ratio ¹⁰Be/⁹Be is sensitive to the size of the halo and to the properties of the local interstellar medium

AMS will separate ¹⁰Be from ⁹Be for 0.15 GeV/n < E < 10 GeV/n after 3 years will collect $\approx 10^5$ ¹⁰Be

264 2f/25

264 2f/26

Dark matter There are many theoretical suggestions that **SUSY particles** (χ) are at least part of the Dark matter.

> 2010 2010 2010

J. Ellis et al., Phys. Lett. B, 214, 3, 1988 and M. Turner and F. Wilczek, Phys. Rv. D, 42, 4, 1990 E.A. Baltz, J. Edsjo, P.R. D59, 23511, 1999

3 Mile

ن وور

్లి

Dark matter

χ

χ.

 $\chi + \chi$

p, e+, γ

Non baryonic Dark Matter

Primary particles by supernovae explosions, pulsars, ...

Secondary particles nuclear interactions.

Diffusion parameters determined from sec./prim. ratios, e.g. B/C ratio

Halo size determined from radioactive isotopes, e.g $^{10}Be/^{9}Be$ ratio ($\tau(^{10}Be)=1.6\cdot10^{6}$ yr)

Best diffusion parameters for nuclear spectra yield:

too few hard gammas, too few antiprotons and too few hard positrons!

Positron search

≻Possible excess seen at 8 GeV by HEAT in cosmic positron fraction.

>DM interpretation.

KK photon B¹ (UED)

3 years

10-1

Ratio e⁺/(e⁺+

10-2

 \rightarrow AMS-02 accuracy with e⁺ from \bullet KK photon B¹ (UED) annihilation,

AMS-02 accuracy with boost =60

Signal 🔳 fitted o

10

• χ^0 (mSugra) annihilation.

Analysis of EGRET Data in 6 sky directions

- A: inner Galaxy (l=±30°, |b|<5°)
- B: Galactic plane avoiding A
- C: Outer Galaxy

D: low latitude (10-20⁰⁾ E: intermediate lat. (20-60⁰) F: Galactic poles (60-90⁰)

AMS sensitivity to anti D

AMS-02 acceptances

➢Antiproton acceptance

0.16 m².sr for [0.5-16] GeV **0.033** m².sr for [16-300] GeV

➢Positron acceptance

0.042 m².sr for E_{e+}>4 GeV

➤Gamma acceptance

- ♦ tracker mode:
 γ→e⁺e⁻ in the upper sub-detector
 0.05 m².sr for [5-300] GeV
- calorimeter mode:
 no γ conversion until ECAL
 0.08 m².sr for [10-300] GeV

~350 y from galactic center during 1 year

264 2f/34

AMS-02: Superconducting Magnet

- 14 superconducting coils
- Geometrical configuration to ensure a null magnetic dipole moment
- Indirect cooling system based on superfluid helium
- Helium vessel: 2500 liters
- Dimensions: inner diameter 1.1m, weight: 2360 Kg
- an intense magnetic field: $\,\sim 0.9\,{
 m T}$
- a large bending power: $\sim 0.8~{
 m T.m^2}$
- All coils are produced, tested individually at 1.8 K and assembled
- Vacuum vessel is completed
- Magnet delivered to CERN where the integration will start in 2006

AMS-02: Transition Radiation Detector

- Modules (328) made of fleece radiator and straw tubes
 - $-E_\gamma \sim ~\gamma({
 m eV})$
 - Emission probability small (10^{-2}) $N_\gamma ~\sim lpha N_{transitions}$
 - TRD photons detected in proportional straw tubes Xe/CO_2
- 20 layers assembled in an octogonal shape structure
- Separation of e⁻/e⁺ from p
 /p up to 300 GeV
- All modules produced
- I4 layers with 220 modules inserted in supporting structure
- Detector finished in Spring 2006

TRD Performances

20 layer prototype tested with e⁻, μ⁻, π⁺, p⁺

Proton rejection >10²

reached up to 250GeV with 90% electron efficiency

Silicon Tracker All 8 planes, 300,000 channels have been produced Coordinator: R.Battiston

Tracker on large 3D measuring machine

264 2f/40

AMS-02 Silicon Spectrometer Rigidity Resolution/

Accurate measurement of cosmic radiation for all atomic nuclei

Test results from accelerator using both RICH and Tracker 158 GeV/N

AMS-02: Ring Imaging Cherenkov Detector

- Proximity focusing Ring Imaging Detector
- 2 different radiators: Aerogel, n=1.05, 2.7 cm thickness Sodium fluoride, n=1.336, 0.5 cm thickness
- Conical reflector
- Photomultiplier matrix (680)
- velocity measurement from emission angle $\Delta eta / eta \sim 0.1\%$ for single charge particles
- Number of photo-electrons measures Z $\Delta Z \simeq$ 0.2-0.25 up to Fe
- directional sensitivity

RICH is currently being assembled
 will be integrated in AMS in June 2006

F. Barao og-15

AMS-02: Electromagnetic Calorimeter

- Lead scintillating fiber sandwich (640 kg), 3D sampling by crossed layer
- $\sim 17 X_o$ radiation lenghts
- 9 superlayers piled up disposed along
 Y and X alternately
- Energy resolution (GeV) $\Delta E/E \simeq 10.1\%/\sqrt{E} \oplus 2.6\%$
- \bullet Distinction between hadrons and e/ γ by shower shape
- Protons supressed by 10^{-4} up to 500 GeV. Together with TRD, rejection of hadrons/electrons $\geq 10^{6}$
- Independent γ detector, angular resolution $\sim 2^\circ, \gamma$ independently triggered

▷ All superlayers installed in mechanical structure
 ▷ Final calibration in e⁻ test beam in 2006

J. Pochon he-24

Conclusions

- Cosmic Rays carry important informations about the non thermal universe
- AMS-02 has been designed to measure with ppb accuracy primary CR composition up the TeV region
- These accurate measurements will allow to undertand propagation and confinement mechanisms in our Galaxy
- The study of the rare components would allow to search for new phenomena (Dark Matter, strangelets) or to better constrain fundamental issues like the existence of primordial antimatter

Addressing fundamen	tal questions aimi	ng for a breakthrough	
Accelerator	<u>Original purpose</u>	Discovery	
AGS Brookhaven (1960)	π N interactions	2 kinds of neutrinos, Breakdown of time reversal symmetry, 4-th Quark	
FNAL Batavia (1970)	neutrino physics	5-th Quark, 6-th Quark	
SLAC Spear (1970)	ep, QED	Partons, 4-th Quark, 3rd electron	
PETRA Hamburg (1980)	6-th Quark	Gluons	
Super Kamiokande (2000)	Proton Decay	Neutrino Oscillation	
Hubble Space Telescope	Galactic Survey	Curvature of the universe	
AMS on ISS	Dark Matter Antimatter	?	