T2K実験 (phase 1)

宇宙線研究所将来計画に向けた勉強会 宇宙ニュートリノ研究部門 2006/06/29

早戸 良成

T2K experiment

(Tokai to Kamioka long baseline neutrino oscillation experiment)

Use intense proton beam from J-PARC accelerator.

(0.75MW 50GeV PS, 30GeV @ T=0)

Japan Proton Accelerator Research Complex

Joint project of JAEA (former JAERI) and KEK

Accelerator construction (Current status)

Commissioning of the neutrino beamline will start in 2009.

J-PARC construction & operation schedule Beam power estimation

Off axis beam

Method to generate quasi-monochromatic neutrino beam

(ref.: BNL-E889 proposal)

The 280m near neutrino detectors

Possible intermediate detector @ 2km

- E_v spectrum @ 2km
 - ~ E_v spectrum @ SK w/o oscillation
- → Possible to reduce uncertainties from Far/Near ratio.
- Detectors
 - -Liquid Ar TPC
 - -Water Cherenkov
 - \bullet Very similar ν detection to SK
 - -Muon Range Detector

To be requested in Japan after the commissioning of J-PARC facilities.

Expected flux and number of interactions @ SK

v oscillation study (1) v_{μ} disappearance

 $P(v_{\mu} \rightarrow v_{\mu}) \sim 1 - \sin^2 \theta_{23} \sin^2(1.27 \Delta m_{23}^2 L/E)$

Use 1-ring μ -like events and reconstruct energy of ν .

v oscillation study (1) v_{μ} disappearance Expected sensitivity

v oscillation study (1) v_{μ} disappearance

To reduce systematic errors comparable or smaller than statistical errors,

- Flux normalization < 10%
- Non-QE ratio < 20%
- Energy scale
- Spectrum width

< 4%

• Spectrum shape [Confirm two models: FLUKA/MARS]

< 10% It is possible to achieve at this level

with the near detector measurements

and external information, p/K production experiments.

v oscillation study (2) v_e appearance

Around the oscillation maximum energy ($E_v \sim 0.6 \text{GeV}$)

 \rightarrow Oscillation probability ~ $\sin^2 2\theta_{13} \sin^2 \Delta \pm 0.015 \sin \delta \sin^3 \Delta$

v oscillation study (2) v_e appe	earance	•		
Search for the electrons from v_e quasi-elastic scattering				
Expected number of events (5yrs of running @ full intensity)		v _e + n -> e⁻ + p		
Event selection criteria	$ \nu_{\mu} CC BG $	$ u_{\mu} NC $ BG	$\begin{array}{c} \text{Beam } \nu_e \\ \text{BG} \end{array}$	v _e signal
Fully contained, E _{vis} >100MeV	2215	847	184	243
1ring e-like events, No decay electron	12	156	71	187
Reconstructed $E_{_{\rm V}}0.35$ ~ 0.85 GeV	1.8	47	21	146
$ \begin{aligned} \pi^0 \text{ rejection cuts} \\ \text{Search for the "additional" ring} \\ \text{Reject } \pi^0 \text{ like events} \\ & (\text{using PMT hit pattern}) \\ \text{Reconstructed } \pi^0 \text{ mass } < 100 \text{MeV/c}^2 \\ \text{Reject events with "forward going"} \\ & \text{electron like particle (} \cos\theta > 0.9 \text{)} \end{aligned} $	0.7	9 total ~ 2	13 23	103

 $\langle \mathbf{a} \rangle$

....

Oscillation prob. : Leading term only. Assuming $\Delta m^2=2.5x10^{-3}eV^2$, sin²2 $\theta_{13}=0.1$ v oscillation study (2) v_e appearance

Expected energy spectrum and sensitivity

v oscillation study (2) v_e appearance Expected sensitivity v.s. time

v oscillation study (2) v_e appearance

Systematic errors

K2K での ν_e appearance search での error (ν_μ background)

v flux & spectrum $\sim 6\% \longrightarrow$

Electron ID and π^0 rejection ~21%

Detector calibrations (Water parameter etc.)

v interactions

and π/K production exp. More study/understanding

Will be improved by data

from near detectors

- of the SK detector
- $\xrightarrow{} Will be improved \\ by new \pi^0 rejection$
- ~11% → Will be improved by measurements of the near detectors and the other experiments.

Total systematic error ~10% is achievable.

Summary

- Commissioning of the J-PARC neutrino beam-line is expected to be started in 2009 as scheduled.
- The physics sensitivity will be maximized by using the "off axis" beam configuration.
- With the designed intensity of the proton beam,

 $v_{\mu} \sim 2330 \text{ events / year (CC} \sim 1660)$

 v_e ~45 events / year (0.4~0.5%@ peak)

- Expected sensitivity
 - ν_{μ} disappearance

 $\delta(\sin^2 2\theta_{23}) \sim 0.01$

 $\delta(\Delta m_{23}^2) < 1 \times 10^{-4} \text{ [eV^2]}$

 v_e appearance

 $sin^{2}2\theta_{13}$ ~0.008 @ Δm^{2}_{13} =2.5×10⁻³[ev²], δ =0

fin.

Energy spectrum

Contribution from $\pi \& K$

