

XMASS experiment

S. Moriyama

January 17, 2013 @ external review, ICRR

XMASS experiment

Multi-purpose experiment using liquid xenon (-100C)

Phase I: 100kg fiducial volume (Total 835kg) Direct detection of Dark Matter

∠+Xe → χ+Xe

XMASS-II Multi-purpose

Y. Suzuki, hep-ph/0008296

Final goal: 10ton fiducial volume (total 25ton)

Direct detection of Dark Matter χ +Xe $\rightarrow \chi$ +Xe pp-⁷Be-solar neutrino v+e \rightarrow v+e Double beta decay ¹³⁶Xe \rightarrow ¹³⁶Ba + 2e⁻

The XMASS collaboration

Kamioka Observatory, ICRR, Univ. of Tokyo:

Y. Suzuki, M. Nakahata, S. Moriyama, M. Yamashita, Y. Kishimoto, A. Takeda, K. Abe, H. Sekiya, H. Ogawa, K. Kobayashi, K. Hiraide, B. S. Yang, D. Umemoto, O. Takachio, K. Hieda, K. Nakagawa, N. Oka IPMU, University of Tokyo: K. Martens, J.Liu Kobe University: Y. Takeuchi, K. Otsuka, K. Hosokawa, A. Murata, Y. Onishi Tokai University: K. Nishijima, F. Kusaba Gifu University: S. Tasaka Yokohama National University: S. Nakamura, I. Murayama, K. Fujii Miyagi University of Education: Y. Fukuda STEL, Nagoya University: Y. Itow, K. Masuda, H. Uchida, H. Takiya Sejong University: Y.D. Kim, Y.N. Kim KRISS: Y.H. Kim, M.K. Lee, K. B. Lee, J.S. Lee 42 collaborators,

42 collaborators 10 institutes

Physics in XMASS

- Solar neutrino, pp & ⁷Be (XMASS-II)
 - 14ev/d pp-v, 6ev/d ⁷Be v (10 ton) - ~1/10 of expected BG of phase I
- Double beta decay (XMASS-II)
 High light yield and good E res.
- Dark Matter search

 Isothermal halo model, v~10⁻³
 ~ 0.1 ev/day/100kg-Xe
 (m_χ = 50 GeV and σ_{SI}=10⁻⁴⁴ cm²)
 Annual modulation <10%

Physics in XMASS

- Light mass WIMPs (low energy threshold)
- Heavy mass WIMPs (low background)

Physics in XMASS

- Search for e/γ signals
 - Large mass: ~>O(ton)
 - Low energy threshold <<1keV</p>
 - Low background <<1/kg/keV/day</p>
- Ex. 1) Axion and its relatives
 - DM axion: 10⁻⁶-10⁻³eV: Invisible
 - Solar axions
 - Axion Like Particles
- Ex. 2) Bosonic super-WIMPs as DM (0.3-100keV)

Solar axions

Single-phase LXe detector

- BG red. by fiducial volume (FV) cut
 - Good to search for e/γ events
- Larger det. has better performance.
 - Timing information start to be major info. (scintillation group velocity ~ 11cm/ns ⇔ scintillation τ=30-40ns)
 - Attenuation ~6m for scintillation light
 ⇔2phase: charge attenuation <1m
 - Better self-shielding eff. for e/γ/n
 ⇒ 2phase: e/γ rej. only ~ 10⁻²−10⁻³
 ⇒ 2phase: High voltage is a potential problem (XENON100: 30kV (16kV achieved), XENON1t: 100kV)

Self shielding for γ injection (XMASSI)

Detector construction, Commissioning Run, and Physics results

Detector construction

2009.11: PMT holder and PMT installation

Demonstration of the detector performance

- The detector gave high photoelectron yield ~14.7p.e./keV thanks to efforts. Largest among DM detectors (2p.e./keV XENON100)
- Detailed description of the detector: arXiv:1301.2815

Reconstructed position

Real Data Simulation

10 15

y [cm]¹⁰

ATM run: 2623, event: 2

Normal run data

- From the first "dark" on Oct. 24 2010, we continued commissioning by May 2012.
- DAQ is triggered based on # of hit PMT within 200ns window.
- Right figure shows the energy spectrum for each reduction step.

(1) Low mass WIMPs search

- One of the interesting parameter space to be studied.
 - DAMA and CoGeNT saw signal/modulatior
 Fermi?
- Energy deposition is smaller for them.

 Our low-energy threshold (0.3keV ⇔ 0.5keV for CoGeNT, 2keV for DAMA) is suitable for the study since the low mass WIMPs can give smaller energy.

Exclusion with current data set

 0.3 keV threshold enables us to search for low mass WIMPs.

Will be published in PLB (online already available) http://dx.doi.org/10.1016/j.physletb.2013.01.001

(2) Solar axion search

- Axion is a hypothetical particle to solve the strong *CP* problem.
- Produced in the Sun and detected in our detector. (like photo-electric effect)
- Our detector is suitable to see its signal, especially because of a large mass and low background.

Our experimental search

- No indication of signals. Bound in g_{aee} vs. mass.
- Better than any constraint in 10-40keV.
- Better than any experimental constraint <1keV

Our experimental search

No indication of signals. Bound in g_{aee} vs. mass.

Better than any constraint in 10-40keV.

arXiv:1212.6153v1 Submitted to PRL

)⁷

Search for solar axions in XMASS, a large liquid-xenon detector

K. Abe,^{1,2} K. Hieda,¹ K. Hiraide,^{1,2} S. Hirano,¹ Y. Kishimoto,^{1,2} K. Kobayashi,^{1,2}

S. Moriyama,^{1,2} K. Nakagawa,¹ M. Nakahata,^{1,2} H. Ogawa,^{1,2} N. Oka,¹ H. Sekiya,^{1,2}

A. Shinozaki,¹ Y. Suzuki,^{1,2} A. Takeda,^{1,2} O. Takachio,¹ K. Ueshima,^{1,*}

D. Umemoto,¹ M. Yamashita,^{1,2} B. S. Yang,¹ S. Tasaka,³ J. Liu,² K. Martens,²

K. Hosokawa,⁴ K. Miuchi,⁴ A. Murata,⁴ Y. Onishi,⁴ Y. Otsuka,⁴ Y. Takeuchi,^{4, 2}

Y. H. Kim,⁵ K. B. Lee,⁵ M. K. Lee,⁵ J. S. Lee,⁵ Y. Fukuda,⁶ Y. Itow,^{7,8}

K. Masuda,⁷ H. Takiya,⁷ H. Uchida,⁷ N. Y. Kim,⁹ Y. D. Kim,⁹ F. Kusaba,¹⁰

K. Nishijima,¹⁰ D. Motoki,^{11,*} K. Fujii,¹² I. Murayama,¹² and S. Nakamura¹²

(XMASS collaboration)

¹Kamioka Observatory, Institute for Cosmic Ray Research,

~// ~+~+~~~~~

(3) Understanding BG

- Background of our detector is low, but not as low as we expected.
- Lower than CRESST, comparable to CoGeNT, DAMA, CDMS and XENON10 before particle ID.

Origin of unexpected BG

Found aluminum seal parts contain ²³⁸U and ²¹⁰Pb.

Aluminum

- Simulation reproduces >5keV: reduction possible
- <5keV not yet convinced.

200

~100 times larger than exp.

Refurbishment for reducing BG

- Most of BG is caused by α/β rays from aluminum. Can be shielded by metal covers.
- It's not perfect since small branch γ rays (~60, 90keV) cannot be shielded completely but good for a short-term improvement.

(4) FV cut study

- FV cut by vertex reconstruction. Surface BG leaks into FV.
 Surface BG explain the observed data within +/-30% range.
- Fit with signals (blue) and BG prediction requires syst. error evaluation of BG prediction. Examining MC dependence.
- A topological cut and timing cut is expected to reduce BG and examine ~10⁻⁴³-10⁻⁴⁴cm². Under study.
- Improvements after the refurbishment are expected.

XMASS 1.5 as a next step

- Larger detectors have many advantages. 1t FV (5t total).
- We can use U-free Al in hand.
- Surface BG must be controlled.
- New PMTs being developed help to identify surface events.

Sensitivities of experiments

 Only XMASS has sensitivity both on e and nuclear recoils in a few years. It also has advantages for the scalability.

Summary

- Phase I
 - Successful construction/operation of the largest liquidxenon detector (835kg). P.E. yield is the best (14.7p.e/keV) among low-background detectors and energy threshold is low (0.3keV).
 - Low mass WIMPs, solar axions, and super-WIMPs were searched for. Richer physics targets than expected.
 - Expecting to have significant improvements of BG by hardware/software improvements at this summer.
- Phase 1.5 & II

Larger detectors with higher sensitivity is projected.