x25 Larger v Target

Quest for CP Violation in lepton sector + Proton Decay Hyper-Kamiokande, project

Masato SHIOZAWA

Kamioka Observatory January-17-2013, ICRR external review

∽0.6GeV vµ ______295km

Super-K

higher intensity v by upgraded J-PARC

Google

55 + 0 × - 1

© 2010 ZENRIN Data © 2010 MIRC/JHA © 2010 Cnes/Spot Image © 2010 Mapabe.com

JPARC

°?24'46.66"N 139°18'01.27"F 標高 214 メートル

- T2K showed indication of $v_{\mu} \rightarrow v_{e}$ in PRL107,041801(2011) - In Kyoto, presented the evidence of electron neutrino appearance

Introduction

- Recent results of T2K shows evidence for $v_{\mu} \rightarrow v_{e}$ appearance
 - II ve candidates, p-value=0.08% (3.2 σ) for zero θ_{13}
 - consistent w/ 2011 T2K result, solar+KamLAND, MINOS, Daya Bay, Reno, DoubleChooz
 - $sin^2 2\theta_{13} = 0.089 \pm 0.010(stat.) \pm 0.005(syst.)$ from DayaBay

• The existence of $V_{\mu} \rightarrow V_{e}$ phenomena opens the way to perform experiments to discover leptonic CP violation.

- Good reason to do it in Japan
 J-PARC is expected to be upgraded to ~700kW and beyond
 well-proven & high performance detector technique w/ the successful experiences in Super-K

• To me, it is an economical, feasible way to explore CPV by extending **JPARC-SK** experimental setup.

- Rich physics topics can be covered by the extension.
 - must extend nucleon decay search capability
 - high statistics atmospheric neutrino study
 - Supernova V
 - astrophysics is also interesting topic

Water Cherenkov technique

- Good imaging capability at ~IGeV
- accelerator V, atmospheric V, proton decays
 Excellent particle ID capability > 99%
- Energy resolution for e and μ ~3%
 Energy threshold ~5MeV
- - muon decay electron, nuclear de-excitation γ , Supernova V, solar V...
- Stable operation
 - energy scale stability ~1%
 - livetime for physics analyses > 90%
- For Ve appearance in T2K
 - Ve signal efficiency ~60%
 - BG v_{μ} +anti v_{μ} CC<0.1%, NC π^{0} <5%
 - $(0.1 < E^{rec} < 1.25 GeV)$

Well-proven technology Excellent detector performance Letter of Intent:

The Hyper-Kamiokande Experiment

— Detector Design and Physics Potential —

K. Abe,^{12,14} T. Abe,¹⁰ H. Aihara,^{10,14} Y. Fukuda,⁵ Y. Hayato,^{12,14} K. Huang,⁴

A. K. Ichikawa,⁴ M. Ikeda,⁴ K. Inoue,^{8,14} H. Ishino,⁷ Y. Itow,⁶ T. Kajita,^{13,14} J. Kameda,^{12,14}

Y. Kishimoto,^{12,14} M. Koga,^{8,14} Y. Koshio,^{12,14} K. P. Lee,¹³ A. Minamino,⁴ M. Miura,^{12,14}

S. Moriyama,^{12, 14} M. Nakahata,^{12, 14} K. Nakamura,^{2, 14} T. Nakaya,^{4, 14} S. Nakayama,^{12, 14}

K. Nishijima,⁹ Y. Nishimura,¹² Y. Obayashi,^{12,14} K. Okumura,¹³ M. Sakuda,⁷ H. Sekiya,^{12,14}

M. Shiozawa,^{12, 14, *} A. T. Suzuki,³ Y. Suzuki,^{12, 14} A. Takeda,^{12, 14} Y. Takeuchi,^{3, 14}

H. K. M. Tanaka,¹¹ S. Tasaka,¹ T. Tomura,¹² M. R. Vagins,¹⁴ J. Wang,¹⁰ and M. Yokoyama^{10,14}

(Hyper-Kamiokande working group)

¹Gifu University, Department of Physics, Gifu, Gifu 501-1193, Japan

²High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
 ³Kobe University, Department of Physics, Kobe, Hyogo 657-8501, Japan

⁴Kyoto University, Department of Physics, Kyoto, Kyoto 606-8502, Japan

⁵Miyagi University of Education, Department of Physics, Sendai, Miyagi 980-0845, Japan

Multi-purpose detector, Hyper-K

- Total (fiducial) volume is 1 (0.56) million ton – 25 × Super-K
- Explore full picture of neutrino oscillation parameters.
 - Discovery of leptonic CP violation (Dirac δ)
 - v mass hierarchy determination($\Delta m_{32}^2 > 0$ or <0)
 - θ_{23} octant determination ($\theta_{23} < \pi/4$ or $>\pi/4$)
- Extend nucleon decay search sensitivity
 - $-\tau_{proton}$ =10³⁴~10³⁵ years
- Neutrinos from astrophysical objects
 - 200 v's / day from Sun
 - possible time variation, ~3 σ day/night asym.
 - 250,000 (50) V's from Supernova @Galacticcenter (Andromeda)
 - ~300 v's / 10 years (>20MeV) SN relic v
 - WIMP v, solar flare v, etc

6

First open Hyper-K meeting (Aug.23-24, 2012)

- Review the current status of the project and discuss the strategy to realize Hyper-K
- Define the international working group and conveners
- Follow up meeting on January 14 and 15, 2013

Hyper-K Working Group Organization

assuming budget being approved from JPY2016

Construction cost estimation

Total	~80Billion JPY	
Excavation	30Billion JPY	
Tank	30Billion JPY	
Photo-detectors	20Billion JPY	High QE HPD

Rough estimation by preconceptual-design

Important events

- Proposal submission to the Science Council of Japan
 - SCJ will update the Master Plan of large research project.
 - 25~30 projects will be selected by the end of 2013.
 - This will be an important inputs to the Roadmap of large research project to be released in 2015 by MEXT
 - We are submitting the project of large neutrino/nucleon decay detector.
 - Hyper-K (far detector) construction and operation cost
 - J-PARC operation w/ (~IMW or higher) and a near detector construction in the same package.
- Discussions in community
 - Japan HEP community put high priority on ILC and the large neutrino detector.
 - Had discussions in Cosmic Ray Community and expect endorsement.
 - Snowmass in US and European future strategy in EU are ongoing.

Budget Request

- Budget request for Hyper-K is not well defined yet until the SCJ master plan and/or the MEXT roadmap is fixed.
- Budget request for R&D is under process.
 - Submitted a proposal to Grant-in-Aid for Scientific Research on Innovative Area. (\$3M/5year)
 - Construction cost for a prototypical water Cherenkov detector w/ new sensors, electronics, etc etc

More Development works

- Detector design optimization
 - tank shape, segmentation wall, tank liner, PMT support structure
- Water purification system, water flow control
- DAQ electronics (under water?)
- Calibration source deployment system
 - -automated, 3D control
- Physics potential studies
 - Requirements for depth, photo-sensors, near detectors
 - Maximize physics sensitivity
- works in the international working group

Accelerator V

560kton (SKx25)

~0.6GeV vµ 295km baseline

Super-K

J-PARC

750kW and beyond

© 2012 Cnes Spot Image © 2012 Mapabe.com © 2012 ZENRIN

$\nu_{\mu} \rightarrow \nu_{e}$ probability (L=295km)

Normal hierarchy

- ±25% CPδ effect at maximum
- CPV test by comparing $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$
- sensitive to exotic CPV (non MNS matrix origin)

► expect to discriminate normal from inverted hierarchy w/ 3σ significance by <~10years data.

• Higher significance and shorter time for larger θ_{23}

Search for nucleon decays

- 10 times better sensitivity than Super-K.
 - only realistic plan to go beyond 10³⁵ years for $p \rightarrow e^+ + \pi^0$
- >3 σ discovery is possible for lifetime beyond Super-K limits.

Summary

- Hyper-K covers rich fundamental physics topics.
 - discovery reach for leptonic CP violation.
 - CPV >3 $\sigma(5\sigma)$ for 74(55)% of δ
 - good chance to discriminate hierarchy and θ_{23} octant.
 - >3 σ by atmospheric ν (and J-PARC ν)
 - ~10 times better sensitivity for nucleon decays.
 - >3 σ : 5.7×10³⁴ for e⁺ π ⁰, 1.0×10³⁴ for vK⁺ with 10 yrs
 - various astrophysical objects.
- Baseline design ready, design optimization going on, maximizing physics sensitivity.
- Budget request path to be defined.