Primary Cosmic Ray Group

Hiroko Miyahara (ICRR)

Scientific objectives

- Mechanism of long-term variations of solar dynamo (11yrs, 22yrs, 1000 yrs, 2000 yrs)
- Long-term changes in the heliospheric environment and incident Galactic Cosmic Rays (GCRs)
- Response of climate system to the GCRs variations (decadal to millennial)
- Effects of GCRs on cloud micro physics

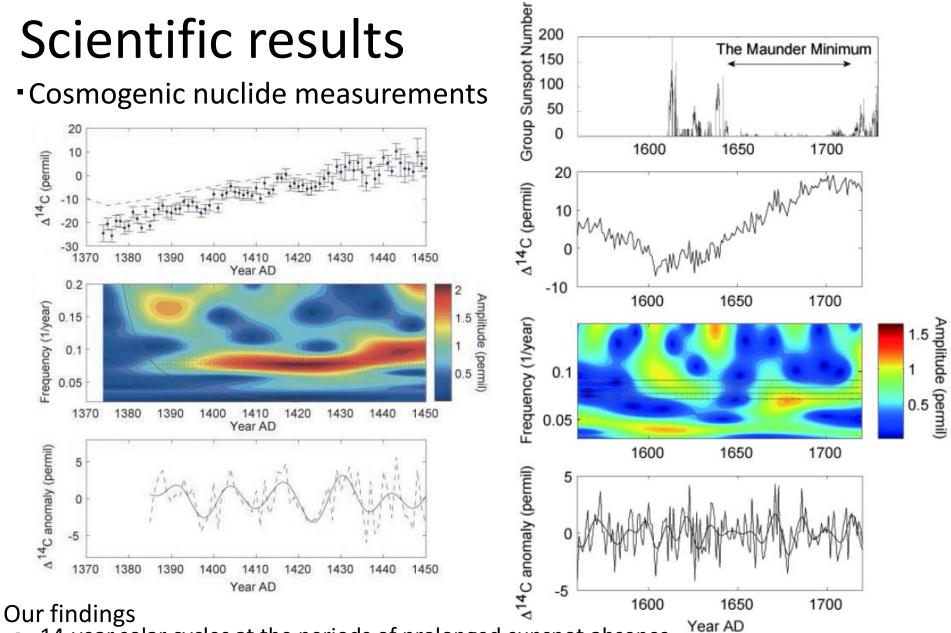
Collaborators

- Univ. of Tokyo (7)
- Yamagata Univ. (4)
- Tokyo Tech (3)
- JAMSTEC (2)
- Nagoya Univ. (2)
- Osaka City Univ. (2)
- Natl. Inst. Polar Research (1)
- NAOJ (1)
- Hirosaki Univ. (1)
- Shinshu Univ. (1)
- Osaka Pref. Univ. (1)
- Aichi Univ. Tech. (1)
- Chubu Univ. (1)
- NASA/Goddard Space Flight Center, USA (2)
- Tata Inst. Fundamental Research, India (1)
- Jomo Kenyatta Univ. of Agriculture and Technology, Kenya (2)
- Kimathi University, Kenya (2)
- Kenya Meteorological Department, Kenya (1)

(35 members in total)

Experiments and Instruments

Cosmogenic nuclide measurements

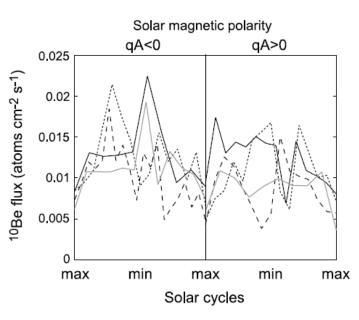

Tree-ring C-14 (annual resolution) Antarctic Ice core Be-10 (annual resolution) Accelerator Mass Spectrometers at Univ. Tokyo and Yamagata Univ. are used.

Paleo-climate reconstructions

Tree-ring Oxygen-18 (annual resolution, Relative Humidity (RH) index)Tree-ring Carbon-13 (annual resolution, Temperature index)TCEA Isotope ratio mass spectrometers at Tokyo Tech. and Nagoya Univ. are used.

Observation of cloud properties

All sky camera for monitoring the tropical convective cloud activities in relation to solar flares & Forbush Decrease events (as R&D for future LIDAR/Satellite observations of clouds)



- 14-year solar cycles at the periods of prolonged sunspot absence
- 28-year magnetic polarity reversals
- Two lengthened solar cycles before the onset of events

Miyahara et al., 2004; 2008; 2010

Scientific results

Cosmogenic nuclide measurements

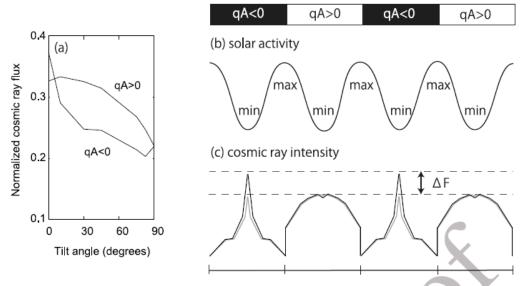
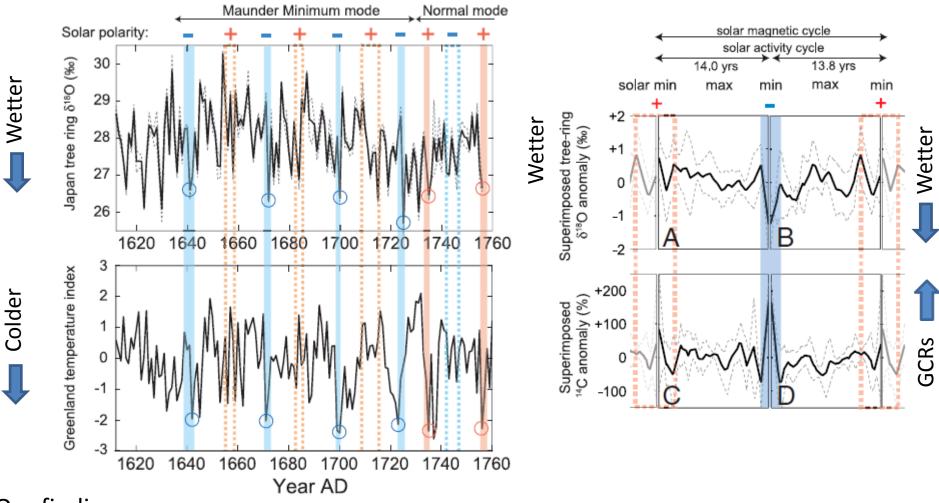


Figure 4. A schematic illustration summarizing the theoretically suggested time profile of incident cosmic rays at the Earth. (a) Incident cosmic rays at the Earth calculated based on standard drift theory for qA > 0 and qA < 0 phases as a function of the tilt angle of heliospheric current sheet [*Kota and Jokipii*, 2001]. (b) Solar activity cycles and (c) the predicted time profile of incident cosmic rays where black line is for the case when the tilt angle reached to 0 degrees at solar cycle minima and to 75 degrees at cycle maxima, while gray line is for the case when the tilt angle reaches only to 5 degrees at cycle minima, which is usual for present observational era. The anomaly ΔF (ratio of maximal flux at qA < 0 to maximal flux at qA > 0) as predicted by stand drift theories is about 15–20%, whereas the observed in ¹⁰Be flux is about 30–40%.

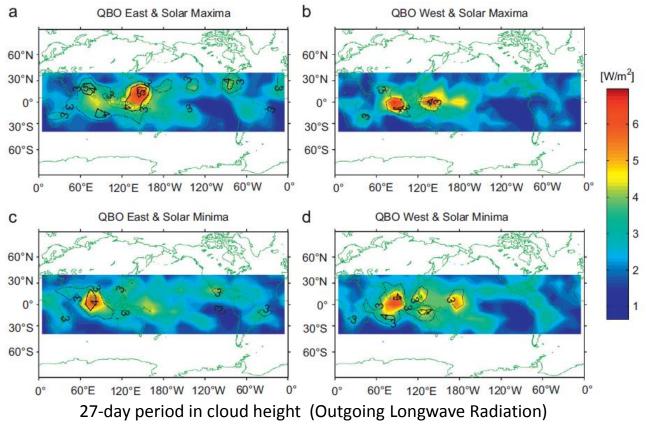

Our findings

- Amplified GCR Hale cycles at the Maunder Minimum (AD1645-1715)
- 40% enhancement at the cycle minima of qA<0 (possibly due to more flattened heliospheric current sheet)
- Possible contribution of heliosheath

Miyahara et al., 2009; Kataoka, Miyahara & Steinhilber, 2012

Scientific results

Paleo-climate reconstructions

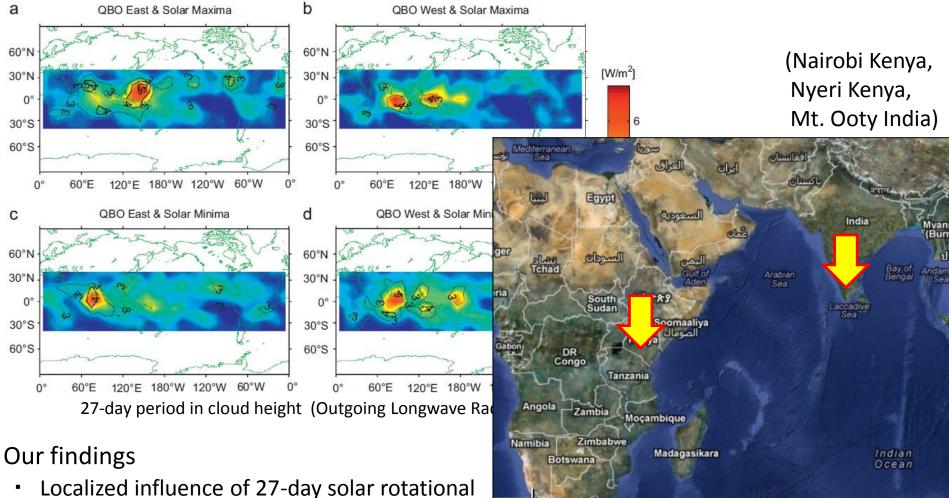

Our findings

- Dependence of climate on solar magnetic polarity (Hale cycle) at the Maunder Minimum
- Synchronized response over the northern hemisphere

Yamaguchi, Yokoyama & Miyahara et al., PNAS 2010

Scientific results and R&D for future observation

Observation of cloud properties


Our findings

- Localized influence of 27-day solar rotational period on tropical convective cloud activities
- Dependence on 11-yr solar cycles & Quasi Biennial
 Oscillation in stratospheric wind direction Takahashi e

Takahashi et al., 2010, Hong & Miyahara et all., 2011

Scientific results and R&D for future observation

Observation of cloud properties

South

Africa

- Localized influence of 27-day solar rotational period on tropical convective cloud activities
- Dependence on 11-yr solar cycles & Quasi Biennial Oscillation in stratospheric wind direction Takah

Takahashi et al., 2010, Hong & Miyahara et all., 2011

Current status & Future prospect of GCR-climate research

- Evidences of cosmic-ray impact on climate from paleo-climate reconstructions (Maunder Minimum, Geomagnetic reversal, Galactic spiral arms)
- Experimental support for cosmic-ray impact on the production of cloud condensation nuclei by "cloud" chamber (e.g. CLOUD experiment @CERN)
- Observations of altitude distributions of the density of cloud condensation nuclei & particle size constrain the mechanisms of GCR impact