Theory Group

M. Kawasaki

Theory Group

• Faculty: Masahiro Kawsaki (2004~) cosmology

Junji Hisano (2002~) particle physics

- Working in wide fields of phenomenology-oriented particle physics, astro/cosmoparticle physics and cosmology including
 - flavor physics in SUSY
 - SUSY dark matter
 - inflation
 - Baryogenesis
 - Big Bang Nucleosynthesis
 - Cosmological constraints on Neutrino Property

• ...

Hadronic Decay of Gravitino

- Gravitino = Superpartner of graviton in SUSY theories $\psi_{3/2}$
- In inflationary Universe gravitinos are produced during reheating after inflation

$$Y_{3/2} \equiv \frac{n_{3/2}}{n_{\gamma}} \simeq 10^{-11} \left(\frac{T_R}{10^{10} {\rm GeV}} \right)$$

 T_R : Reheating Temperature

- Gravitino mass $m_{3/2} \sim O(100) \text{GeV} O(1) \text{TeV}$
- Lifetime (decay only through gravitational int.)
 - Radiative Decay

 - Hadronic Decay $au(\psi_{3/2} \rightarrow \tilde{g} + g) \simeq 6 \times 10^7 \sec\left(\frac{m_{3/2}}{100 \text{GeV}}\right)^{-3} \psi_{3/2}$
- Decay after BBN
 - Effects on Light Elements

In particular, hadronic decay gives stringent constraint

Hadronic decay gives the most stringent constraint

Limit on Neutrino Mass from WMAP

Tritium beta decay experiments:

$$m_{\nu_e} < 3 \text{ eV}$$

Cosmological bounds:

Spergel et al. [WMAP collaboration]	WMAP1 +2dFGRS	$m_{\nu} < 0.2 \text{ eV}$
Tegmark et al. [SDSS collaboration]	WMAP1 +SDSS (main sample)	$m_{ u} < 0.6 { m ~eV}$ (3.8 eV for WMAP only)

It was thought that no stringent limit on neutrino mass is obtained from CMB experiment alone

Effect of neutrino masses on CMB power spectrum

Primordial abundance of He4

- Primordial He4 abundance is inferred by observation of extra-galactic HII regions
- $Y_p \equiv \frac{\rho_{^4\mathrm{He}}}{\rho_{\mathrm{tot}}}$ Previous estimations Fields, Olive (1998) $Y_p = 0.238 \pm 0.002 \pm 0.005$ $Y_p = 0.242 \pm 0.002$ Izotov, Thuan (2003) From WMAP observation inconsistent? $Y_p = 0.24815 \pm 0.00068$

Re-analysis of Izotov-Thuan (2004) data

Stellar absorption of He lines is important

31 HII regions without absorption $Y_p = 0.234 \pm 0.004$

Flavor physics in SUSY models

Supersymmetric Standard Model (SUSY SM)

SUSY mass terms of SUSY particles:new source of flavor violation (FV)

$$\begin{bmatrix} m_{\tilde{f}}^2, m_f^{\dagger} m_f \end{bmatrix} \neq 0 \quad (f = u, d, \nu, e)$$

$$(m_{\tilde{f}}^2)_{ij}$$

$$\tilde{f}_i - \cdots - \tilde{f}_j \qquad (i, j = 1, 2, 3)$$

Flavor-changing neutral current (FCNC) processes are predicted.

FCNC processes probes models beyond SUSY SM • Seesaw mechanism

Right-handed neutrinos generate light neutrino masses.

$$\langle H \rangle$$
 $\langle H \rangle$ \Rightarrow $m_{
u} = rac{(f_{
u} \langle H \rangle)^2}{M_N}$

• SUSY seesaw model

Neutrino Yukawa coupling generates FV in scalar lepton mass terms.

$$\tilde{l} - \begin{pmatrix} \ddot{H} \\ N \end{pmatrix} - \tilde{l} \quad \Rightarrow \ (m_{\tilde{l}}^2)_{ij} \simeq \frac{(f_{\nu}^{\star} f_{\nu}^T)_{ij}}{(4\pi)^2} (3m_0^2 + A_0^2) \log \frac{M_N^2}{M_{\rm planck}^2}$$

Lepton-flavor violating processes, such as $\mu^+ \rightarrow e^+ \gamma$ are predicted.

• SUSY GUT with right-handed neutrinos Neutrino Yukawa coupling generates FV in scalar quark mass terms, too.

$$ilde{d} = egin{pmatrix} ilde{H}_C \ N \end{pmatrix} = ilde{d} \qquad \Rightarrow \quad (m_{ ilde{d}}^2)_{ij} \simeq rac{(f_
u^\star f_
u^T)_{ij}}{(4\pi)^2} (3m_0^2 + A_0^2) \log rac{M_{GUT}^2}{M_{
m planck}^2} + M_{
m planck}^2 +$$

Bottom-strange quark transition <= atmospheric neutrino results

GUT relation between hadronic and leptonic flavor violation

Flavor violations in scalar quark and lepton mass terms are related.

 $(m_{\tilde{l}}^2)_{32}^\star \simeq (m_{\tilde{d}}^2)_{23} e^{i\phi_{23}}$

CP asymmetries in $b \rightarrow s\bar{s}s$ modes are well correlated with $Br(\tau \rightarrow \mu\gamma)$.

Rare tau decay bound gives a constraint on large deviation of CP asymmetries in the model.

Dark matter detection

Weakly-interacting massive particles (WIMPs) are candidates for the dark matter in the universe.

In the supersymmetric standard model (SUSY SM) neutralino is the DM candidate.

$$egin{aligned} ilde{\chi}^0 &= c_{ ilde{B}^0} ilde{B}^0 + c_{ ilde{W}^0} ilde{W}^0 + c_{ ilde{H}^0_1} ilde{H}^0_1 + c_{ ilde{H}^0_2} ilde{H}^0_2 \ (ilde{B}^0 ext{ bino}, ilde{W}^0 ext{ wino, and } ilde{H}^0_1 ilde{H}^0_2 ext{ Higgsinos}) \end{aligned}$$

Detection methods for the neutralino dark matter are

• direct detection on the earth

$$\tilde{\chi}^0 N \to \tilde{\chi}^0 N$$

• indirect detection in cosmic rays

$${\tilde \chi}^0 {\tilde \chi}^0 o \gamma, \ e^+, \ {\bar p}, \ \nu$$

We studied quantum corrections to annihilation processes for Wino-like and Higgsino-like neutralino DMs.

Perturbation is broken in annihilation cross section in $m \geq m_W/\alpha_2$ in a non-relativistic limit due to the threshold singularity.

Weak interaction is a long-distance force for them. We need to include non-perturbative effect by evaluating wave functions.

Annihilation cross sections to two gammas and W pair.

- Cross sections are enhanced significantly around 2(7) TeV for Winolike (Higgsino-like) due to resonance. A bound state with binding energy close to zero appears.
- Two-gamma process is at one-loop level in perturbation. However, the cross section is not suppressed for m>~TeV, compared with W pair.

Implication to wino-like neuralino DM

• Thermal relic abundance

0.3

(7)

0.2 • Line gamma rays from Galactic Non-perturbative Ω_{DM} center 0.1 WMAP • Positron flux from Galactic halo 0 3 2 Detectability is enhanced. m (TeV) Line γ ray flux from the galactic center 10^{-9} Positron Fraction: $e^+/(e^+ + e^-)$ Triplet HEAT 94-95 δm $\frac{\delta_m}{\delta_m} = 0.1 (G_{\rm eV})$ **HEAT 2000** 10^{11} (cm⁻² sec⁻¹ Backeround m = 10 (GeV)(Ge (5)-13 10 (1) 0.3 TeV (6)NFW Profile (5) 2 TeV (2) 0.6 TeV $\Delta \Omega = 10^{3}$ 10^{-15} (3) 1 TeV (6) 2.5 TeV (4) 1.5 TeV (7) 3 TeV (2) (3) (4)-10 0.1 10 100 1000 m (TeV) E (GeV) Hisano, Matsumoto, Nojiri, Saito (2005) Hisano, Matsumoto, Nojiri, Saito, Senami (2006)

Conclusion

• We believe that Theory Group has kept high activity and given significant contribution to particle physics, cosmology and astrophysics