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Coronal Mass Ejections (CMEs) are large blobs of (solar) coronal plasma

CMEs are expelled (together with magnetic fields) and propagate through the
interplanetary medium.

Sometimes CMEs are directed towards Earth and cause geomagnetic storms.

We investigate the structure and effects of CMEs using Galactic cosmic rays
(GCRs) as a probe
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Sun-Earth connection
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Solar modulation
Forbush Decrease

GCRs: Proxy for Space weather

Cosmic rays and Solar activity
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@ Being a charged particles, GCRs are profoundly affected by the magnetic fields
carried by the solar wind, specially by CME-shock-sheath system.

@ Galactic cosmic rays (GCRs) are a good probe to study the Solar Transient
Events.
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Forbush decrease

Forbush decrease (FD) is a transient decrease in the observed galactic cosmic ray
intensity at the Earth.

24 November 2001
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24 November 2001
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Can be due to magnetic field compression of shock (like an umbrella), or low (cosmic
ray) density magnetic cloud behind it.
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Forbush decrease

Forbush decrease (FD) is a transient decrease in the observed galactic cosmic ray
intensity at the Earth.

24 November 2001
T T

0.5, T

0.0

0.5 Qf/

% deviation in cosmicray flux

L4

-2.0 L L L I
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Time in days

Can be due to magnetic field compression of shock (like an umbrella), or low (cosmic
ray) density magnetic cloud behind it.
FD magnitude is estimated as the difference of GCR intensity at the pre-event time to
that at the minimum of the decrease.
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Forbush decrease

@ General (theoretical) view: Forbush decrease due
to propagating, diffusive barrier; i.e, CME-driven
shock

® "Two-step” Forbush decreases! second step due
to near-earth CME/magnetic cloud.

@ Some attribute entire Forbush decrease is due to
the magnetic cloud; i.e, it is a manifestation of
the low-density cavity(magnetic cloud) engulfing
the earth.
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Forbush Decrease

Cut-off Rigidity

@ Rigidity Rg (volts) = P ¢/Z e indicates how tightly a cosmic ray proton is tied
to the magnetic field.

@ Protons below the cut-off rigidity don't make it to the top of the atmosphere
(to produce a muon shower); they are deflected by the geomagnetic field back
into space.

@ The cut-off rigidity is very dependent on the B field geometry;

Low (— 0) for a nearly vertical field,
High (Maximum) for nearly horizontal
field;

i.e., its dependent on the viewing direction (different for East, West, North,
South)
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High-rigidity Forbush decreases: due to CMEs or shocks?

@ Cosmic ray Forbush decreases are a good proxy to understand the near-Earth
structure of the CME-shock system.
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CME-only model
Forbush decrease Models St ’j”‘ ”; lodel GCR p f S h
< s: Proxy for Space weather

High-rigidity Forbush decreases: due to CMEs or shocks?

@ Cosmic ray Forbush decreases are a good proxy to understand the near-Earth
structure of the CME-shock system.

@ The relative contributions of shocks and coronal mass ejections (CMEs) in
causing FDs is a matter of debate.

@ We studied the FD events by considering two independant models, and checked
the validity of these models using the FD-magnitude to rigidity spectrum from
GRAPES-3.

@ CME-only cumulative diffusion model
© Shock-only model

“High-rigidity Forbush decreases: due to CMEs or Shock?”, Arunbabu et al., 2013,
Astronomy & Astrophysics, 555, 139
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Forbush decrease Models

GCRs: Proxy for Space weather

GRAPES-3 tracking muon telescope

Located at Ooty, India

11.49N, 76.7CE, at an altitude of 2200 m.

3712 propotional counters in 4 muon stations each contain 4 modules
Total area 560 m?, (Now, expansion is doubling this area)

Cut-off rigidty 15-23.5 GV.

Arun Babu K.P. 22 January 2021
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Results

Forbush decrease Models

GRAPES-3 tracking muon telescope

GCRs: Proxy for Space weather
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High energy galactic (not of solar origin) cosmic rays progressively diffuse into
the expanding, propagating CME bubble, across the B fields bounding it.
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CME-only model
Forbush decrease Models St only Model
Results GCRs: Proxy for Space weather

High energy galactic (not of solar origin) cosmic rays progressively diffuse into
the expanding, propagating CME bubble, across the B fields bounding it.

At the earth, the density contrast between the CME interior & outside (in high
energy CR protons) is manifested as the Forbush decrease.
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CME-only model

Forbush decrease Models Shock only Model

GCRs: Proxy for Space weather

The CME-only model: details

CME-only model

Flux of protons entering CME is

N,
F(em™2s71) = D, (p,0?) 88 =
P

: "

Cosmic rays
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CME-only model

Forbush decrease Models N
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GCRs: Proxy for Space weather

The CME-only model: details

CME-only model

Flux of protons entering CME is

ON,
ar

where

@ We used a TWO step velocity profile, first from observation in LASCO field of
view, second we assume that CME dynamics are governed exclusively by the
aerodynamic drag it experiences due to momentum coupling with the ambient
solar wind.

F(cm72 sfl) = DJ_(p7(72)

@ We assumed the density gradient, which are broadly consistent with observation
, (De Simone et al., 2011)
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FD magnitude
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M = =
Na a
Y
- R(T)2L(T)
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CME only model
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GCRs: Proxy for Space weather

CME-only Model: cumulative diffusion

FD magnitude

yoo Ne— N oN DA
= TN, N, T AR
T L(t)R(t)D | : | \ / 5
_ Yo e b |
B R(T)>L(T)
M :  predicted FD magnitude
D, : (diffusion coefficient | large scale B field
R : MC radius
L :  MC length (into sky plane)
R : Larmor radius
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CME-only model
Forbush decrease Models Shock only Model

Results

GCRs: Proxy for Space weather

The shock-only model (following Wibberenz et al 1998)

a
D

.......... shock
--D

L T

The Forbush decrease is due to the shock - a propagating, diffusive barrier. The B
field enhancement at the shock acts as an “umbrella” against galactic cosmic rays.

FD magnitude

_ Ua — Ushock _ AU . szLshock Dla
M=s———F=—= : —1
Ua Ua Dla DLShDCk
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CME-only model
Shock only Model
Results

Forbush decrease Models

GCRs: Proxy for Space weather

24 November 2001

24 Nov 2001
3 : .
S
g2 1
=1 x
2 ¥
5 x X T %
@ T
E b E3 ]
[a) ES
w
0 |
10 15 20 25
Rigidity (GV)
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CME-only model
Shock only N €
Results

Forbush decrease Models

GCRs: Proxy for Space weather

24 November 2001

24 Nov 2001
3 } : L
77777 CME-only model: cumulative diffuiion

S
o 2fF 1
3 X%
© | ==
E b H-y
o x
w

0 i

10 15 20 25

Rigidity (GV)

@ <Bt?url)/Bg>

For CME-only (cumulative diffusion) model, opme = 28 %,
while for shock-only model, o0 = 400 %.
Typical quiet sun turbulence level: o ~ 6-15 % (Spangler 2002, Bavassano & Bruno 1995).
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CME-only model
Shock only Model
Results

24 November 2001

Forbush decrease Models

GCRs: Proxy for Space weather

24 Nov 2001
3 } : L
77777 CME-only model: cumulative diﬁu;jon
S
o 2fF 1
3 X%
E 4F : K-
a F
w
0 i
10 15 20 25

Rigidity (GV)

o= = <Bt?url)/Bg>

For CME-only (cumulative diffusion) model, opme = 28 %,
while for shock-only model, o0 = 400 %.
Typical quiet sun turbulence level: o ~ 6-15 % (Spangler 2002, Bavassano & Bruno 1995).

Forbush decrease due to cumulative diffusion of protons into the CME through the
turbulent sheath is a more reasonable picture
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Results

Results

Event CME-only model  shock-only model
Omc Oshock

11 April 2001 9.4 % 100 %

17 August 2001 13 % 180 %

24 November 2001 28 % 400 %

7 September 2002 13% 100%

20 November 2003 6.7 % 400 %

26 July 2004 46 % 200 %

FDs involving protons of rigidities ranging from 14 to 24 GV, the CME-only model is a
viable one, while the shock-only model is not.
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Correlation between FD profile and interplanetary magnetic field enhancement:
understanding cross-field diffusion

CME Sheath =" Cosmic rays

"How are Forbush decreases related with IP magnetic field enhancements 7", K.P.
Arunbabu et. al., 2015, Astronomy & Astrophysics, 580, 41
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The FD looks like a lagged copy of the B field compression.
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@ Biotal, scalar magnetic field
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FD & IP mag. field relation Corr

IP Magnetic fields

@ Biotal, scalar magnetic field
@ B,, is the magnetic field in the Sun-Earth line in the ecliptic plane and pointing

towards Sun
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FD & IP mag. field relation Corr

IP Magnetic fields

@ Biotal, scalar magnetic field
@ B,, is the magnetic field in the Sun-Earth line in the ecliptic plane and pointing
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@ B, is the magnetic field parallel to the ecliptic north pole
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@ Biotal, scalar magnetic field

@ B,, is the magnetic field in the Sun-Earth line in the ecliptic plane and pointing
towards Sun

@ B, is the magnetic field parallel to the ecliptic north pole

@ B,, is the magnetic field in the ecliptic plane pointing towards dusk (opposite
the Earth’s motion)
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@ Biotal, scalar magnetic field

@ B,, is the magnetic field in the Sun-Earth line in the ecliptic plane and pointing
towards Sun

@ B, is the magnetic field parallel to the ecliptic north pole

@ B,, is the magnetic field in the ecliptic plane pointing towards dusk (opposite
the Earth’s motion)

@ B, = (B2 +B2)", perpendicular magnetic field.
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0822

s Fi
s+ bt
ST o | el o .
0 10 20 30 40 0 10 20 30 40 O 10 20 30 40 50 0 10 20 30 40 0 10 20 30 40 O 10 20 30 40 50
Btmax (nT) Bpmax (nT)

Dir Corr. with Bt  Corr. with B

NW 0.682874 0.682926
N 0.692284 0.689747
NE 0.710686 0.706913
W 0.687189 0.684261
\% 0.690613 0.683616
E 0.677899 0.672830
SW 0.674214 0.669421
S 0.662859 0.656359
SE 0.628104 0.622673
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Corr. of FD profile h B

B-field compression and Turbulence

B-Field Compression Turbulence Level 02 = (B2, /B2)

2001 November 24
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FD & IP mag. field relation

B-field compression and Turbulence

B-Field Compression Turbulence Level 02 = (B2, /B2)
2001 November 24
60
2001 November 24 50 |
b
> _ 40 H
b Shock arrival E 30 “\ \
é 1F E Max. B compr @ 2 ‘ ‘A‘ ,\\/\
= —_mcstart ‘: SR Yo,
g 0 —__ FD minimum * —— Shock arrival
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3 -1 S ‘\ | MC end =
3 5 b
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2 10E- | W | 3
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@ Enhancement of magnetic field compression responsible for the FD is in fact the
shock sheath: the region between the shock and the magnetic cloud.
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B-field compression and Turbulence

B-Field Compression Turbulence Level 02 = (B2, /B2)
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2001 November 24 50 ;\1

FD onset ’

Shock arrival
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@ Enhancement of magnetic field compression responsible for the FD is in fact the
shock sheath: the region between the shock and the magnetic cloud.

@ The turbulence level is also enhanced in the shock sheath.

Arun Babu K.P. 22 January 2021 ICRR 22 /43



Corr

M etic pr n
Corr. of FD profile with B

FD & IP mag. field relation GCRs: Proxy for Space weather

The FD profile is very similar to the B field compression!

2002 May 23
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The FD profile is very similar to the B field compression!
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The FD profile is very similar to the B field compression!
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Cross-field diffusion

@ We consider the (local) diffusion of high energy protons through the large scale
B field compression.
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Cross-field diffusion

@ We consider the (local) diffusion of high energy protons through the large scale
B field compression.

@ The lag between the IP mag. field compression and the FD profile can be
attributed to (turbulent) cross-field diffusion of protons through the B field
compression.
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Cross-field diffusion

@ We consider the (local) diffusion of high energy protons through the large scale
B field compression.

@ The lag between the IP mag. field compression and the FD profile can be
attributed to (turbulent) cross-field diffusion of protons through the B field
compression.

@ We calculated the No. of diff. required to address this lag
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FD & IP mag. field relation C
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Cross-field diffusion

@ We consider the (local) diffusion of high energy protons through the large scale
B field compression.

@ The lag between the IP mag. field compression and the FD profile can be
attributed to (turbulent) cross-field diffusion of protons through the B field
compression.

@ We calculated the No. of diff. required to address this lag
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Cross-field diffusion

@ We consider the (local) diffusion of high energy protons through the large scale
B field compression.

@ The lag between the IP mag. field compression and the FD profile can be
attributed to (turbulent) cross-field diffusion of protons through the B field
compression.

@ We calculated the No. of diff. required to address this lag
24 November 2001
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@ The FD profile correlates well with the IP magnetic field enhancement profile.

Arun Babu K.P. 22 January 2021 ICRR 24 / 43
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Cross-field diffusion

@ We consider the (local) diffusion of high energy protons through the large scale
B field compression.

@ The lag between the IP mag. field compression and the FD profile can be
attributed to (turbulent) cross-field diffusion of protons through the B field
compression.

@ We calculated the No. of diff. required to address this lag

24 November 2001
0.5 T T T T

% deviation in cosmicray flux

-2.0 1 L L L
22 24 26 28 30 32
Time in days

@ The FD profile correlates well with the IP magnetic field enhancement profile.
@ The observed lag between the FD and the IP magnetic field compression ~ few
tens to few hundred diffusion times.
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MFR observed by HAWC

MFR observation by HAWC

Identification of a magnetic flux-rope, first time using a ground based observatory

"Interplanetary Magnetic Flux Rope Observed at Ground Level by HAWC"”, S.
Akiyama et al., 2020 The Astrophysical Journal, 905, 73
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MFR observed by HAWC

HAWC

@ Located on a plateau between Sierra Negra & Pico de Orizaba volcanoes in
Mexico
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MFR observed by HAWC

HAWC

@ Located on a plateau between Sierra Negra & Pico de Orizaba volcanoes in
Mexico

@ 18959/41"N, 97918’30" W, at an altitude of 4100 m.
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MFR observed by HAWC

HAWC

@ Located on a plateau between Sierra Negra & Pico de Orizaba volcanoes in
Mexico

@ 1895941"N, 97918/30"W, at an altitude of 4100 m.
@ 300 Water Cherenkov detectors, Each of them 7.3 m diamter and 4.5 m deep.
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MFR observed by HAWC

HAWC

@ Located on a plateau between Sierra Negra & Pico de Orizaba volcanoes in
Mexico

@ 1895941"N, 97918/30"W, at an altitude of 4100 m.
@ 300 Water Cherenkov detectors, Each of them 7.3 m diamter and 4.5 m deep.
@ Span over 22000 m? area.
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MFR observed by HAWC

TDC scaler system

air shower
particle

200,000 L of
purified water

photomultiplier
tube (PMT)

@ 4 PMTs, 10" PMT at center and 8" at equilateral triangle of side 3.2 m.
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TDC scaler system

air shower
particle

200,000 L of
purified water

photomultiplier
tube (PMT)

@ 4 PMTs, 10" PMT at center and 8" at equilateral triangle of side 3.2 m.
@ TDC DAQ counts hits in a time window of 30 ns for each PMT
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MFR observed by HAWC

TDC scaler system

air shower
particle

200,000 L of
purified water

photomultiplier
tube (PMT)

@ 4 PMTs, 10" PMT at center and 8" at equilateral triangle of side 3.2 m.
@ TDC DAQ counts hits in a time window of 30 ns for each PMT
@ Single PMT rate and multiplicity M2, M3, M4 are recorded.
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MFR observed by HAWC

TDC scaler system

air shower
particle

200,000 L of
purified water

photomultiplier
tube (PMT)

@ 4 PMTs, 10" PMT at center and 8" at equilateral triangle of side 3.2 m.
@ TDC DAQ counts hits in a time window of 30 ns for each PMT

@ Single PMT rate and multiplicity M2, M3, M4 are recorded.

@ Cut-off rigidity 8GV and median rigidity 40-46 GV.
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MFR observed by HAWC

TDC scaler system

air shower
particle

200,000 L of
purified water

photomultiplier
tube (PMT)

4 PMTs, 10" PMT at center and 8" at equilateral triangle of side 3.2 m.
TDC DAQ counts hits in a time window of 30 ns for each PMT

Single PMT rate and multiplicity M2, M3, M4 are recorded.

Cut-off rigidity 8GV and median rigidity 40-46 GV.

Can measure GCR intensity with accuracy < 0.01% for every minute.
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MFR observed by HAWC

Solar modulations

Parker’s Transport equation

on 1 on
= Vew - - . : - 5 Vew) — =
= wvn— v (k- 7n) 3(v )8/np

@ The GCR intensity can be considered to be in quasi-equilibrium, hence the

source term S and rate of change of the GCR density % can be ignored.
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MFR observed by HAWC

Solar modulations

Parker’s Transport equation

on

1
¢ T Vv vn—v (s vn)— (V- Vo) on

dln p -

@ The GCR intensity can be considered to be in quasi-equilibrium, hence the
source term S and rate of change of the GCR density % can be ignored.

@ By numerically solving the Fokker-Planck equation, it was shown that effect of
the adiabatic cooling becomes very small at rigidities > 10 GV . Thus, the

adiabatic term %(V.VSW)% can also be ignored.
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@ The GCR intensity can be considered to be in quasi-equilibrium, hence the

source term S and rate of change of the GCR density % can be ignored.

@ By numerically solving the Fokker-Planck equation, it was shown that effect of
the adiabatic cooling becomes very small at rigidities > 10 GV . Thus, the
adiabatic term %(V.VSW)% can also be ignored.

@ The lowest-order approximation of the transport equation is the
diffusion-convection framework.
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MFR observed by HAWC

Solar modulations

Parker’s Transport equation

on 1 on
= Vew - - . : - 5 Vew) — =
= wvn— v (k- 7n) 3(v )8/np

@ The GCR intensity can be considered to be in quasi-equilibrium, hence the

source term S and rate of change of the GCR density % can be ignored.

@ By numerically solving the Fokker-Planck equation, it was shown that effect of
the adiabatic cooling becomes very small at rigidities > 10 GV . Thus, the
adiabatic term %(V.VSW)% can also be ignored.

@ The lowest-order approximation of the transport equation is the
diffusion-convection framework.

@ This inward diffusive flux is countered by an outward convective flux,
Vn-k% =0
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MFR observed by HAWC

Solar modulations

Parker's

on

v (5 1) = (7 Vow) o =
t S 2 W= R e 3v swalnp_

@ The GCR intensity can be considered to be in quasi-equilibrium, hence the

source term S and rate of change of the GCR density % can be ignored.

@ By numerically solving the Fokker-Planck equation, it was shown that effect of
the adiabatic cooling becomes very small at rigidities > 10 GV . Thus, the
adiabatic term %(V.VSW)% can also be ignored.

@ The lowest-order approximation of the transport equation is the
diffusion-convection framework.

@ This inward diffusive flux is countered by an outward convective flux,
.dn __
Vn - kg =0
@ where k depends on magnetic field B, turbulence level and rigidity of particle.
@ Our observations will have modulation effects, due to variation in velocity V and

magnetic field B
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MFR observed by HAWC
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MFR observed by HAWC

TDC Scaler Rate-Local
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MFR observed by HAWC

Significance of Event in HAWC observation

Distribution of standard deviation of HAWC TDC-scaler rate
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MFR observed by HAWC

Significance of Event in HAWC observation

Distribution of standard deviation of HAWC TDC-scaler rate
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Time [UT] (Start time : September 1, 2016 00:00 UT)

TDC-Scaler o Magnitude of Peak 1 Magnitude of Peak 2
(%) (%) in terms of o (%) in terms of o

Ry 0.18 x 10~ | 0.7122 77.6 0.7761 84.6

M, 1.46 x 10792 | 0.7562 51.8 0.7843 53.7

M3 1.60 x 10792 | 0.7235 45.2 0.7940 49.7

M, 2.72 x 10792 | 0.6690 24.6 0.7570 27.8
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MFR observed by HAWC

First thought

HAWC observation
its effects
iiding

GCRs: Proxy for Space weather
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CME & its effects
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GCRs: Proxy for Space weather
MFR observed by HAWC

CME transport

Using a 2D hydrodynamic code we are able to reproduce the speed and density SW
profiles observed at 1AU before, during and after the passage of the ICME

9-0ct 17 —0ct
Time [UT] (Start Time: October

In this particular event the CME/magnetic-cloud/flux-rope was not perturbed by other
SW structures in the interplanetary medium
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GCR guiding
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MFR observed by HAWC

Effects on magnetosphere
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MFR observed by HAWC

Effects on magnetosphere
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Also time of event was not correlating with the magnetosphere disturbances.
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MFR observed by HAWC

What can be the cause?

Sheath
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MFR observed by HAWC

Flux-rope
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@ We fitted the fluxrope model in circular cylindrical coordinate system
(Nieves-Chinchilla et al. 2019)
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@ We fitted the fluxrope model in circular cylindrical coordinate system
(Nieves-Chinchilla et al. 2019)
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MFR observed by HAWC

Flux-rope

@
£ 450
>

il

< 4530
25 4 -
= J20k
& 15 = e
s J10®
z 5
0
20 B,
e B
£ #5
o Op B,
-20 Ep—A——— P e
12 13 5 16

14
Time (days Oct 2016)

@ We fitted the fluxrope model in circular cylindrical coordinate system
(Nieves-Chinchilla et al. 2019)

_ _ RO 2 _ By
@B = 0 B, = BY [1-(#)], By = —Hgtk,
@ MFR was having an axis orientation of longitude ¢ = 999 and latitude

= —2109.
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@ We fitted the fluxrope model in circular cylindrical coordinate system
(Nieves-Chinchilla et al. 2019)

_ _ RO 2 _ By
@B = 0 B, = BY [1-(#)], By = —Hgtk,
@ MFR was having an axis orientation of longitude ¢ = 999 and latitude

0 =219,
@ Radius of fluxrope were 0.146 AU.
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@ Low turbulene level make it feasible for Lorentz acceleration.

@ Larmor radius and diffusion length are << than size of MFR
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Simulation of Particle Trajectory

@ We used Cordinate system with origin at MFR center.
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@ We used Cordinate system with origin at MFR center.

@ It can be obtained from GSE by rotation Rz by 6 and Ry by ¢.
@ Then assumed the MFR have cylindrical crosssection

@ Field inside MFR were modelled using observations at 1 AU.

Arun Babu K.P. 22 January 2021 ICRR 37 /43



GCR guiding GCRs: Proxy for Space weather
MFR observed by HAWC

Simulation of Particle Trajectory

We used Cordinate system with origin at MFR center.

It can be obtained from GSE by rotation Rz by 6 and Ry by ¢.
Then assumed the MFR have cylindrical crosssection

Field inside MFR were modelled using observations at 1 AU.
Accelerations were estimated using Lorentz force

Arun Babu K.P. 22 January 2021 ICRR 37 /43



H
M e s

GCR guiding GCRs: Proxy for Space weather
MFR observed by HAWC

Simulation of Particle Trajectory

We used Cordinate system with origin at MFR center.

It can be obtained from GSE by rotation Rz by 6 and Ry by ¢.
Then assumed the MFR have cylindrical crosssection

Field inside MFR were modelled using observations at 1 AU.
Accelerations were estimated using Lorentz force

Relativistic converson were used into particle frame.

Arun Babu K.P. 22 January 2021 ICRR 37 /43



H
M e s

GCR guiding GCRs: Proxy for Space weather
MFR observed by HAWC

Simulation of Particle Trajectory

Arun Babu K.P. 22 January 2021 ICRR 37 /43

We used Cordinate system with origin at MFR center.

It can be obtained from GSE by rotation Rz by 6 and Ry by ¢.

Then assumed the MFR have cylindrical crosssection

Field inside MFR were modelled using observations at 1 AU.
Accelerations were estimated using Lorentz force

Relativistic converson were used into particle frame.

Inside MFR its position and velocity were estimated in every 100 m travel.
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It can be obtained from GSE by rotation Rz by 6 and Ry by ¢.

Then assumed the MFR have cylindrical crosssection

Field inside MFR were modelled using observations at 1 AU.
Accelerations were estimated using Lorentz force

Relativistic converson were used into particle frame.

Inside MFR its position and velocity were estimated in every 100 m travel.
We chose only particle that travel significant distance along axial direction
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We used Cordinate system with origin at MFR center.

It can be obtained from GSE by rotation Rz by 6 and Ry by ¢.

Then assumed the MFR have cylindrical crosssection

Field inside MFR were modelled using observations at 1 AU.
Accelerations were estimated using Lorentz force

Relativistic converson were used into particle frame.

Inside MFR its position and velocity were estimated in every 100 m travel.
We chose only particle that travel significant distance along axial direction
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Assymtotic direction of HAWC, Estimated using IGRF12, and backtracing method.
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Coupling to HAWC direction

Assymtotic direction of HAWC, Estimated using IGRF12, and backtracing method.
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A is the angle between assymtotic direction and the interplanetary magnetic field.
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MFR observed by HAWC

Other observations

Time difference as a function of geo-longitude of the observed decrease of rates
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HAWC rate is scaled down by a factor of 30
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Results

@ The CME was associated with a very weak shock, which does not shield away
the GCRs from getting into the fluxrope.
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Results

@ The CME was associated with a very weak shock, which does not shield away
the GCRs from getting into the fluxrope.

@ The MFR was with perfect magnetic topology and low density cavity, because of
which the ram-pressure was lower than ambient solar wind.

@ The GCRs of low GeV energy were trapped inside the MFR and guided through
the axis.

@ These particle were allowed to enter in to Earth's atmosphere while it was
passing through MFR.

@ The first enhancement observed in HAWC was dues to 14-30 GeV protons,
where as second peak was due to 8-12 GeV protons.
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MFR observed by HAWC

Results

@ The CME was associated with a very weak shock, which does not shield away
the GCRs from getting into the fluxrope.

@ The MFR was with perfect magnetic topology and low density cavity, because of
which the ram-pressure was lower than ambient solar wind.

@ The GCRs of low GeV energy were trapped inside the MFR and guided through
the axis.

@ These particle were allowed to enter in to Earth's atmosphere while it was
passing through MFR.

@ The first enhancement observed in HAWC was dues to 14-30 GeV protons,
where as second peak was due to 8-12 GeV protons.

@ First evidence of particle guiding inside a fluxrope.
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