

r Yamamoto

Many slides from presentations at LVK Sep.2020, Including talks by D. Relize, R.Adhikari, G.Vajente, CBC, et al. ICRR seminar on December 21, 2020

Image Credit: Gabriele Vajente

LIGO History

- 1965~ (Stan Whitcomb, APS April Meeting, 15 April 2019)
 - » Developing the GW interferometer concept
 - » Understanding noises seismic, thermal, shot, gas...
 - » Unifying efforts to build LIGO (CIT/MIT/NSF)

• 1994~

- » Building initial LIGO for the real size R&D
- » Organizing LIGO Scientific Collaboration
- » Operating initial LIGO at design sensitivity for one year

• 2008~

- » Building advanced LIGO for the GW signal detection
 - aLIGO = iLIGO + GEO (Hannover)
- » O1/O2 observation runs from 2015 Sept, one signal / month
 - Detection of the first GW signal from BBH and from BNS
- » O3 started April 1, 2019 and one signal / 1.5 week
 - Public announcement of candidates via GCN circular
- » Upgrades toward the design sensitivity
- 2025~
 - » Building the observatory for astronomy and cosmology

Kip Thorn(CIT) Ron Drever (Glasgow→CIT) Rai Weiss(MIT) 40m at CIT "Blue Book" by Weiss and ... 1989 LIGO Proposal by Vogt and... Barry Barish (CIT, SSC \rightarrow LIGO) --- 1st generation ----Power Recycling FP Michelson Single suspension 10W 1µ laser --- 2nd generation ----**Dual Recycling FP Michelson** with stable recycling cavities Quadruple suspensions 25~120W 1µ laser

--- 3rd generation ---

Squeezing – frequency independent to frequency dependent

Better coating to reduced thermal noise

Cryogenic, 2μ laser, Silicon, \ldots

Advanced LIGO, H1 & L1 in the International GW Network

Noise sources of GW detectors

LIGO-G1901066-v4

Hiro Yamamoto ICRR December 21, 2020

[1] $GW190412: 30.0M_{\odot}+8.3M_{\odot} \rightarrow 37.3M_{\odot}$, 570~880Mpc, R. Abbott et al. (LIGO Scientific, Virgo), GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses, Phys. Rev. D 102, 043015 (2020)

[2] $GW190425 : 2.0M_{\odot}+1.4M_{\odot} \rightarrow 3.4M_{\odot}$, 90~230Mpc, B. P. Abbott et al. (LIGO Scientific, Virgo), GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4M_{\odot}, Astrophys. J. Lett. 892, L3 (2020)

[3] $GW190521: 85M_{\odot}+66M_{\odot} \rightarrow 142M_{\odot}$, 2.7~7.7Gpc, R. Abbott et al. (LIGO Scientific, Virgo), GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_{\odot}, Phys. Rev. Lett. 125, 101102 (2020), R. Abbott et al. (LIGO Scientific, Virgo), Properties and astrophysical implications of the 150 M_{\odot} binary black hole merger GW190521, Astrophys. J. Lett. 900, L13 (2020)

[4] $GW190814 : 23.2M_{\odot} + 2.6M_{\odot} \rightarrow 25.6M_{\odot}$, 196~282Mpc, R. Abbott et al. (LIGO Scientific, Virgo), GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object, Astrophys. J. 896, L44 (2020)

Events in O1 and O2 10 BBH and 1 BNS heavy \rightarrow strong, short

GW150914 signals

LIGO-G1901066-v4

Hiro Yamamoto ICRR December 21, 2020

GW from Binary Back Hole merger

O1/O2 arXiv:1811.12907, arXiv:1903.04467, O3 arXiv:2010.14529

- Direct detection of gravitational wave signals
- Observation of stellar mass black holes hierarchy up to $150 M_{\odot}$
- Observation of a binary black hole (BBH) system and merger
- BBH merger rate

O1/O2 : 9.7-101 Gpc⁻³ yr⁻¹ to O3 : 15.3-38.8 Gpc⁻³ yr⁻¹

- Test of GR in strong field:
 - » Graviton mass upper limit : O1/O2:5x10⁻²³ eV/c², O3:1.76x10⁻²³ eV/c²
 - » Violation of general relativity : O1/O2 vs O3

GW150914 Black hole merger

GW170817 Neutron star merger

LIGO-G1901066-v4

ICRR December 21, 2020 Hiro Yamamoto

Comparison of the stars of the

GW and EM signals from Binary Neutron Star merger

- BNS merger rate : 80-810 Gpc⁻³ y⁻¹ (BBH 15.3-38.8 Gpc⁻³ y⁻¹)
- Confirmation of association between short GRBs and BNS mergers, and new insights into physics of GRB events.
- Limits on dynamical ejecta in the associated kilonova.
- BNS mergers as producers of heavy elements confirmed.
- Independent measurement of the Hubble constant consistent with prior measurements.
- Test of generate relativity

Binary Neutron Star merger in O2 and O3

GW170817+GRB170817A (O1/O2) Astrophys. J. Lett. 848, L13 (2017) GW190425 (O3) Astrophys. J. Lett. 892, L3 (2020), G2001659 (CBC 2020 LVK)

GW170817

28 deg^2	Low-spin priors $(\chi \le 0.05)$	High-spin priors $(\chi \le 0.89)$
Primary mass m_1	1.36-1.60 M _☉	1.36−2.26 M _☉
Secondary mass m_2	1.17–1.36 M	0.86–1.36 M _☉
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$	$1.188^{+0.004}_{-0.002} M_{\odot}$
Mass ratio m_2/m_1	0.7–1.0	0.4–1.0
Total mass $m_{\rm tot}$	$2.74^{+0.04}_{-0.01}M_{\odot}$	$2.82^{+0.47}_{-0.09}M_{\odot}$
Radiated energy E_{rad}	$> 0.025 M_{\odot} c^2$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8} Mpc	40^{+8} Mpc
Viewing angle Θ	$\leq 55^{\circ}$	$\leq 56^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$	≤ 28°
Combined dimensionless tidal	≤ 800	≤ 700
Dimensionless tidal deformabil	≤ 800	≤ 1400

GW190425

LIGO-G1901066-v4

LIGO

EMBER 14, 201

Hiro Yamamoto

Table 1Source Properties for GW190425

8284 deg ²	Low-spin Prior $(\chi < 0.05)$	High-spin Prior $(\chi < 0.89)$
Primary mass m_1	1.60–1.87 M_{\odot}	$1.61-2.52 M_{\odot}$
Secondary mass m_2	1.46–1.69 <i>M</i> _☉	$1.12-1.68 M_{\odot}$
Chirp mass M	$1.44^{+0.02}_{-0.02}~M_{\odot}$	$1.44^{+0.02}_{-0.02}M_{\odot}$
Detector-frame chirp mass	$1.4868^{+0.0003}_{-0.0003}~M_{\odot}$	$1.4873^{+0.0008}_{-0.0006}~M_{\odot}$
Mass ratio m_2/m_1	0.8 - 1.0	0.4 - 1.0
Total mass m _{tot}	$3.3^{+0.1}_{-0.1}~{ m M}_{\odot}$	$3.4^{+0.3}_{-0.1}M_{\odot}$
Effective inspiral spin parameter χ_{eff}	$0.012\substack{+0.01\\-0.01}$	$0.058\substack{+0.11\\-0.05}$
Luminosity distance $D_{\rm L}$	159 ⁺⁶⁹ ₋₇₂ Mpc	159^{+69}_{-71} Mpc
Combined dimensionless tidal deformability $\tilde{\Delta}$	≤600	≤1100

ICRR December 21, 2020

Exotic events in O3a

17

GW190521: mass of the remnant 142^{+28} -16 M \odot is considered an intermediate mass black hole

15
1 in 4900 yrs
2.7 – 7.7 Gpc
$85{ m M}_{\odot}$
$66~M_{\odot}$
142 ${ m M}_{\odot}$

GW190814: The secondary, 2.6 MO, is heavier than known NSs and lighter than known BHs.

	Network SNR:	25
2.9 Model 1	FAR:	1 in 8.3~1300 yrs
28 — Model 2	Distance:	196-282 Mpc
	Primary Mass:	23.2 ${ m M}_{\odot}$
2.5	Secondary Mass:	2.6 M_{\odot}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Remnant IMBH's Mass:	25.6 M_{\odot}

New in O3: Open Public Alerts

- Preliminary GCN Notice will be sent out autonomously in low latency (~minutes) for event candidates meeting given FAR
 - » FAR threshold targets an overall astrophysical purity of 90%
 - 1 / 2 months overall for CBC
 - 1 / year overall for Burst
 - » Modified FAR will be used for candidates with EM counterparts
 - » These alerts will be publicly available through the Gamma-ray Coordinates Network (GCN)
 - » Event candidates will be publicly available in https://gracedb.ligo.org
- Preliminary Notice will be followed by:
 - » Initial Notice and Circular confirming the event (~4h), following human vetting by a smaller number of empowered advocates
 - » A retraction (latency dependent on the event type)
- LIGO/Virgo Public Alerts User Guide & Support
 - » https://emfollow.docs.ligo.org/userguide/quickstart.html
 - » contact+emfollow/userguide@support.ligo.org
- openIvem mailing list
 - » Instructions at https://wiki.gw-astronomy.org/OpenLVEM
 - » This is a public list to which anyone can subscribe

When GW150914 was detected, it was prohibited to talk about it for a half year, even to family.

- https://www.gw-openscience.org/
- All data of O1, O2, O3a
- **Getting Started**
- Bulk data access example

Archive for O2 4KHZ R1 dataset

Each data file corresponds to 4096 seconds of GPS time, and may contain up to half a be downloaded in either HDF5 or Frame format. For documentation, see the tutorials. O2_4KHZ_R1 start GPS: 1164556817 UTC: 2016-11-30T16:00:00 O2_4KHZ_R1 end GPS: 1187733618 UTC: 2017-08-25T22:00:00

Vext choose you	r gravitational wave detector:		
🔵 Н1			
 L1 			
Now choose the time or GPS. Ch	start and end time of the data the ange either side and the other res	at you wa ponds in	ant, either Unive mediately.
Now choose the time or GPS. Ch	start and end time of the data that ange either side and the other res Universal Time (ISO8601)	at you wa ponds in	ant, either Unive mediately. GPS Time
Now choose the ime or GPS. Ch Start Time	start and end time of the data that ange either side and the other res Universal Time (ISO8601) 2016-11-30T16:00:00	at you wa ponds im	ant, either Univent mediately. GPS Time 1164556817

Choose your output format:

Time series data in HDF5 and Frame files

Time series data in HDF5 and Frame files, with data quality guide

Getting Started Data Bulk Data Catalogs Timelines Software

Tutorials Web Apps Detector Status

My Sources

GPS ↔ UTC Projects

Acknowledge

About

Gravitational Wave Open Science Center

LIGO Hanford Observatory, Washington (Credits: C. Gray)

(Credits: J. Giaime)

Virgo detector, Italy (Credits: Virgo Collaboration)

The Gravitational Wave Open Science Center provides data from gravitational-wave observatories, along with access to tutorials and software tools.

Astrophysics > High Energy Astrophysical Phenomena

New Binary Black Hole Mergers in the Second Observing Rur of Advanced LIGO and Advanced Virgo

Tejaswi Venumadhav, Barak Zackay, Javier Roulet, Liang Dai, Matias Zaldarriaga

(Submitted on 15 Apr 2019)

OK

OK

Hiro Yamamoto

We report the detection of new binary black hole merger events in the publicly available data from the second observing run of advanced LIGO and advanced Virgo (O2). The mergers were discovered using the new search pipeline described in Venumadhav et al. (1902.10341), and are above the detection thresholds as defined in Abbott et al. (1811.12907). Three of the mergers (GW170121, GW170304, GW170727) have inferred probabilities of being of astrophysical origin $p_{astro} > 0.98$. The remaining three (GW170425, GW170202, GW170403) are less certain, with p_{astro} ranging from 0.5 to 0.8. The newly found mergers largely share the statistical properties of previously reported events, with the exception of GW170403, the

Observing Scenario: Run Plans

arXiv:"Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA"

O4 events Simulated Event Stream for a one year duration O4 run

Assumptions:

- 190 Mpc BNS range for H1, L1
- 90 Mpc BNS range for Virgo
- Same duty cycles, detector coincidence as in O3

LIGO-G1901066-v4

LGO

Hiro Yamamoto ICRR

ICRR December 21

From O2 to O3

Mechanical Mode

Resonant

Scattered Field

Radiation Pressure

- Mitigate Parametric instability by acoustic Mode Dampers
- Laser power 25W to 50W with 3dB squeezing
- Die hard straylight mitigation

Arm Cavity Field

Challenge: Point Absorbers in the Test Mass Coatings

Point absorbers (PA) on 100%* of ETMs (10 of 10), 20% of (2 of 10) ITMs

LIGO

- PAs are likely embedded in the coatings; studies of witness samples find that PAs are primarily aluminum with ~^{20 μm} some traces of carbon
- 3 of 4 coating vendors have PA on witness samples
 - » Many witness samples characterized during the shutdown

		# witness samples
Vendor	% with PAs	tested
V1	67%	87
V2	100%	4
V3	50%	4
V4	0%	4

- Pursuing multi-faceted R&D approach to 'repair' existing test masses
 - » Ultrafast pulsed laser ablation: 2nd trial somewhat successful; no Al or C found after ablation but still absorbing. Perhaps Ta?
 - » Chemical etching: 2 compounds being tried for AI etch, beginning Ta etch
 - » Mechanical milling: trial has just started
- Also working with test mass coating vendor LMA to address problem 'at the source'
 - » LMA has made 2 runs with chamber modifications to eliminate contaminants; characterization begins at LIGO Caltech in 2 weeks

8 -4 -2.00 4.00 6.00 8.00 10.00

funded project

A+ Project

Pre-O4

>>

BNS Target Sensitivity: 190 Mpc >>

US budget: \$20.5M

- Frequency-dependent Squeezing >>
 - 300 m filter cavity (FC)
- Improved dark port efficiency >>
 - Low loss Faraday isolator
- Adaptive wavefront control
- Pre-O5:
 - BNS Target Sensitivity: 325 Mpc >>
 - Low coating thermal noise (CTN) >> test mass coatings
 - 450 mm beamsplitter >>
 - Balanced homodyne >>

Critical paths

- O4: End Station buildings & >> tube enclosures for new 300m filter cavities
 - Fallback is to delay FC to pre-**O**5
- O5: Test mass low thermal >> noise coating development

O4: Planned Detector Improvements

Project/WBS	Program Plan [Combination 1]	Fallback [Combination 2]
Operations	Continued refurbishn	nent of LIGO Vacuum System
Operations	Replace Test Masse	s that have point absorbers
Detector Improvements	Additional Stray Light Baf	iles [Scattered light noise<200 Hz]
Detector Improvements	High power laser (new la	aser amplifier) [Lower shot noise]
A+ Project	High-efficier	cy Faraday isolators
A+ Project	Adaptive mo	de matching systems
A+ Project	Frequency-dependent squeezing (Filter Cavity)	
Potential ranges O4	190 MPc (LLO/LHO)	165 MPc (LLO/LHO)

The Path to O4

- This is the top level schedule for implement planned improvements for O4 in M1800262
- NOT SET IN STONE! The schedule is a continual work in progress and updated frequently; note review points and definition points
- Schedule currently paced by delay in repolishing end test masses
- *"O4 is currently planned to start no earlier than June 2022" in M1800277*
 - » M1800277 : Monthly status report of commissioning and detector improvement
 - » Compiled by D.Sigg, V.Frolov, P.Fritschel, D.Coynr, C.Torrie, etc, reported to D.Reitze, A.Lazzarini

1	1.1					Updated 2nd N	Nov 2020	1.60	nL.	AD	AL	AF	AG.	AH	AI	LA		AL.	AM		AU	AP AU		A3 /	
² Ma '20	ay Jun 0 '20	Jul '20	Aug '20	Sep '20	Oct '20	Nov '20	Dec '20	Jan '21	Feb '21	Mar '21	Apr '21	May '21	Jun '21	Jul '21	Aug '21	Sep '21	Oct '21	Nov '21	Dec '21	Jan '22	Feb '22	Mar '2:	2 Apr '22	May '	22
3 SITE	SHUTDON	VN Comm / I	nstall		-		/ Cc	mmissionir	ng (Comm)			/e	R	_			e	_				-		EF	2
5			Review			Review	-		Review	Review			Review					-	Review	_			-		00.
6			Readinese			Initial-phase			Mid-phase	Mid-phase			Follow-on						Final-phase	PREV					
7			Review			Review			Review:	Review:			Review						Review	04					
8			following IFO-re-start			INS & COMM			INS & COMM	B LLO			Test Mass Replacement						INS COMM & OH						
10		EXTERNA	L ASSUMPT	rions				-	48	HANFORD A	+ FAC: FCES	(Construction t	o JOINT occup	sancy)								-		_	
11						-			LIVINGSTON		S (Constructio	on to JOINT oc	supancy)												
12					India: Move H	AM & BSC from	LVEA	AT VAG: FIL	TER CAVITY T	UBE (L1 and h	n)						HAMB (L1)		HAMB (H1)						
17					LExC Building	t LHO [Constru	ction, heavy c	ligging in first	6 months]		LExC Building														
15		Covid-19 Shutdown LHO only	HANFORD	: INSTALL /	сомм																				
76		_	HAM shack site prep			HAM-ISI Instali					INS & CON HAM7 sus	AM: SQUEE2 pended, HAI	CING TO FRE M8 w/ cavity)	iq. depe)	NDENT SQ	JEEZING (3	stages of s	queezing, V	OPO platfor	rm + in-air,					
16 17			HAM shack site oreo		A+: OPO Re	HAM-(SI Install build, SQZ ta					INS & CON HAM7 sus	AM: SQUEE2 pended, HAI	2ING TO FRE M8 w/ cavity)	EQ. DEPE)	NDENT SQI	DEEZING (3	stages of s ETMs (H1) -	queezing, V Staggered	'OPO platfor deliv not ye	rm + in-air, t applied					
16 17 18		1	HAM shack site oreo TMDS charge removal	намт 2 нт н СОММ (Н1)	A+: OPO Re	HAM45I Install build, SQZ ta ITM, BRDB5			Pump, 3 weeks		INS & CON HAM7 sus	AM: SQUEE2 pended, HAI SLIC, OFI (H	1ING TO FRE M8 w/ cavity) 11)	EQ. DEPE)	NDENT SQ	JEEZING (3 DI / LOPS I	stages of s ETMs (H1) -	queezing, V Staggered COMMISSIC	'OPO platfor deliv not ye DNING	rm + in-air, t applied			More Corr run	m or	1
16 17 18 19			HAM shack site oren TMDS charge removal	HAMT 2 H1 H COMM (H1) CDS: Software Updates (week)	HAM6 Kemoval (H1)	HAM-ISI Imstall build, SQZ to ITM, BRDBS CDS Hardwr updatos (H1)	HAM7 SQZ. Ibles, FI As S, VMD (H1 BSC3 Doors (H1)		Pump, 3 weeks		INS & COM HAM7 sus	AM: SQUEEZ pended, HAI SLIC, OFI (H DI Laser (H	9ING TO FRE M8 w/ cavity) 11)	IQ. DEPE	NDENT SQI SLIC(H1) endX,Y	JEEZING (3 DI / LOPS I	stages of s ETMs (H1) -	queezing, V Staggered COMMISSIC	IOPO platfor deliv not ye DNING	rm + in-air, t applied			More Corr run	m or	
16 17 18 19 20		LIVINGST	HAM shack site oreo TMDS charge removal	HANT 2 H1 h COMM (H1) CDS: Software Updates (week) L / COMM	netall A+: OPO Re HAM6 VOPO Removal (H1)	HAM-ISI Install build, SQZ te ITM, BRDBS CDS Hartlwr updatos (H1)	HAM7 SQZ, ables, FI As S, VMD (H1 BSC3 Doors (H1)	SUS Install	Pump, 3 weeks	COMM (H1)	INS & COM HAM7 sus	AM: SQUEEZ pended, HAI SLIC, OFI (H DI Laser (H	ting to FRE M8 w/ cavity) H)	IQ. DEPE	NDENT SQI SLIC(H1) endX,Y	JEEZING (3 DI / LOPS I	stages of s ETMs (H1) -	queezing, V Staggered COMMISSIC	IOPO platfor deliv not ye DNING	rm + in-air, t applied			More Com run	m or	
16 17 18 19 20 21		LIVINGST HAM shac	HAM shack site oreo TMDS charge removal ON: INSTAL k site prep L1	HAMT 2 H1 H COMM (H1) CDS: Software Updates (week) L / COMM	nstall A+: OPO Re HAM6 VOPO Removal (H1)	HAM-ISI Install Duild, SQZ to ITM, BRDBS CDS Hartfwr updatos (H1) HAM7 L1 Inst	HAM7 SQZ ables, FI As s, VMD (H1 BSC3 Doors (H1)	HAM567 Cleanroo m	Pump, 3 weeks HAM-ISI Inst SQZ and SU	COMM (H1) Iall, HAM7 S Install	INS & CON HAM7 sus INS & CON VOPO plat	AM: SQUEEZ pended, HAI SLIC, OFI (H DI Laser (H M: SQUEEZ form + in-air	ING TO FRE M8 w/ cavity H) 1) ZING TO FRE 7, HAM7 susp	EQ. DEPE	SLIC(H1) endX,Y NDENT SQ IAM8 w/ ca	JEEZING (3 DI / LOPS I JEEZING (3 Alty)	stages of s ETMs (H1) - stages of s	queezing, V Staggered COMMISSIC queezing,	IOPO platfor deliv not ye DNING	rm + in-air, t applied			More Com	m or	
16 17 18 19 20 21 22		LIVINGST HAM shac	HAM shack site oreo TMDS charge removal	HANT 2 H1 M COMM (H1) CDS: Software Updates (week) L / COMM	nstall A+: OPO Re HAM6 VOP0 Removal (H1)	HAM-ISI Install build, SQZ to TM, BROBS CDS Hardwr updatos (H1) HAM7 L1 Inst A+: OPO Re	HAM7 SQ2 ables, F1 As s, VMD (H1 BSC3 Deors (H1) tall	HAMS67 Cleanroo m tables, FI /	Pung, 3 weeks HAM-ISI Insi SQZ and SU Issy	COMM (H1) tall, HAM7 5 install	INS & COM HAM7 sus	AM: SQUEEZ pended, HAI SLIC, OFI (H DI Leser (H MM: SQUEEZ form + in-air	ING TO FRE M8 w/ cavity 1) 1) 2ING TO FRE r, HAM7 susp	Q. DEPE) EQ. DEPE pended, H	SLIC(H1) endX,Y NDENT SQI	JEEZING (3 DI / LOPS I JEEZING (3 dity) DI / LOPS I	stages of s STMs (H1) - Stages of s ETMs (L1) -	queezing, V Staggered COMMISSIC queezing, Staggered	OPO platfor deliv not ye DNING deliv not yet	m + in-air, t applied t applied			More Con	m or	
16 17 16 18 20 21 22 23		LIVINGST HAM shac COMM (L1	HAM shack site oreo TMDS charge removal ON: INSTALL k site prep L ⁴	COMM (H1) CDS: Software (vestc) L / COMM Lesk checking then SLic checking checking	HAME A+: OPO Re HAME VOPO Removal (H1) Pumpdown (2wk) plus GV6 (24 wks)	HAMASI Install build, SQ2 to CDS Harder updates (H1) HAM7 L1 Inst A+: OPO Re COMM (6-8	HAM7 SQZ ables, FI As S, VMD (H1 BSC3 Deors (H1) abuild, SQZ i wks)	HAMS67 Cleanroo tables, Fl / CORNER VE VMD & CFL, Feedthrough	Pung, 3 weeks HAM-ISI Inst SQZ and SU Assy INT LLO: SLIC TCS, HOS, vi rs (L1)	COMM (H1) all, HAM7 S Install	INS & CON HAM7 sus INS & CON VOPO plat Pump, 3 weeks	MY: SQUEE2 pended, HAI SLIC, OFI (F DI Laser (H MY: SQUEE2 form + In-ali COMM (L1)	ING TO FRE M8 w/ cavity) II) I) II) II) III IIIG TO FRE IIIG TO FRE	EQ. DEPE	SLIC(H1) endX,Y NDENT SQ IAMB w/ car	JEEZING (3 DI / LOPS I JEEZING (3 JILOPS I	stages of s STMs (H1) - stages of s STMs (L1) -	queezing, V Staggered COMMISSIC Queezing, Staggered COMMISSIC	IOPO platfor deliv not ye DNING deliv not yel	m + in-air, t applied t applied			More Con run More Con	m or	2
16 17 18 19 20 21 22 23 23		LIVINGST HAM shac COMM (L1	HAM shack site oran TMDS charge removal ON: INSTAL k site prep L:	Leek (11) Leek (12) Leek (1) Leek (1) Leek (1)	HAME A+: OPO Re HAME VOPO Removal (H1) Pumpdown (2wk) plus GV6 (2-4 ws)	IAAMSI Imsault build, SQ2 ta TTM, BROBS CDS Hardwr updates (H1) HAM7 L1 Inst A+: OPO Re COMM (6-8	HAM7 SQZ ables, FI As S, VMD (H1 BSC3 Deers (H1) tall ebuild, SQZ I wks)	HAMS67 Cleanroo tables, FI / CORNER VE VMD & OFI, Feedbrougt	Pump, 3 weeks HAM-ISI Inst SQZ and SU Assy INT LLO: SLIC Assy INT LLO: SLIC SQS (-1) BSGS (-1)	COMM (H1) tail, HAM7 S Install c, BROBS, ewports, HAM 7	INS & CON HAM7 sus INS & CON VOPO plat Pump, 3 weeks	MY: SQUEE2 pended, HAI SLIC, OFI (F DI Laser (H MY: SQUEE2 form + in-ali COMM (L1)	ING TO FRE M8 w/ cavity) II) II) II) EndX (GV11	EQ. DEPE	SLIC(H1) endX,Y NDENT SQI IAMB w/ car	JEEZING (3 DI / LOPS I JEEZING (3 http://lops.i	stages of s STMs (H1) - stages of s ETMs (L1) -	queezing, V Staggered COMMISSIC queezing, Staggered COMMISSIC	IOPO platfor deliv not ye DNING deliv not yet	m + in-air, t applied			More Con run	m or	2

Brownian noise predictions

Gabriele Vajente, G2001684,OWG 2020LVK

Material	Y [Gpa]	φ [10⁻⁴]	n	ETM Num. layers	ETM Brownian noise 10 ⁻²⁰ m/VHz @100Hz	ITM Num. layers	ITM Brownian noise 10 ⁻²⁰ m/VHz @100Hz	Total Brownian noise 10 ⁻²⁰ m/VHz @100Hz	Ratio w.r.t. A+ design 0.66 x 10 ⁻²⁰ @100Hz
Titania-doped tantala (aLIGO)	124	3.6	2.07	38	0.65	16	0.46	1.13	1.71
Titania- Germania annealed 700°C 10 h	81	0.66	1.87	52	0.37	22	0.26	0.64	0.97
Titania- Germania annealed 600°C 100 h	90	0.96	1.87	52	0.42	22	0.30	0.74	1.11
Titania-Silica annealed 700°C 10 h	135	1.35	2.01	44	0.43	18	0.31	0.75	1.14

Using silica parameters: Y = 72 GPa, n = 1.45, ϕ = 0.23 x 10⁻⁴

Optical absorption for those materials in line with tantala and titania-doped tantala, it should not pose a problem

3rd generation ground-based GW detectors

LIGO

Cosmic Explorer

a next generation gravitational wave detecto

Comparing Detectors

Deeper

➢ observe compact binaries at z ≥ 10

U Wider

observe heavier mergers, earlier inspirals

□ Sharper

> observe with greater signal-to-noise

ICR

P1900065: Astro2020 Science White Paper Gravitational-Wave Astronomy in the 2020s and Beyond: A view across the gravitational wave spectrum

LIGO-G1-00-04

LIGO

US 3rd generation ground-based interferometer timeline

2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 **Cosmic Explorer Timeline** parts built for parts built for 1 um install 2 um install construction design crvo upgrade funded funded funded. $\frac{1}{2}$ $\frac{1}{2}$ Inst & CE - Stage 1 Inst & Cosmic Explorer Facility CE - Stage 2 Comm Comm Operations @ 1 um Cosmic Explorer Stage1 Cosmic Explorer Stage 2 Operations@1 um: Operations@2 um: design and operations design and operations informed by A++ informed by Voyager Voyager Voyager LIGO, Voyager A+, A++ Inst & Comm Operations **Voyager Timeline** 40m CE sized prototype Parts built successful silicon design construction mirrors funded funded ▲ Voyager FDR \$ 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2022 2024 2020 Years