

Star-forming galaxies through cosmic time The impacts and signatures of cosmic rays

Ellis Owen

CICA Fellow

Institute of Astronomy National Tsing Hua University

erowen@gapp.nthu.edu.tw

Collaborators Kinwah Wu (UCL); Alvina Y L On (NTHU/UCL-MSSL); Shih-Ping Lai (NTHU); Y X Jane Yap (NTHU); KG Lee (IPMU); Albert Kong (NTHU/Oxford)

HST and ALMA image of MACS1149-JD1 (z=9.11) – NASA/ESA, Hashimoto+ 2018

ICRR Seminar – February 2020

Outline

- Star-forming galaxies in the Universe
- Cosmic rays in star-forming galaxies
- Particle propagation
- Cosmic ray feedback & star-formation histories
- A closer look: star-formation & sub-grid physics
- Signatures (gamma-rays)

Star-forming Galaxies in the Universe

Image of simulated Lyman-alpha emission around a high redshift group of protogalaxies – credit: Geach et al.

Local Starbursts

NGC 253

NASA/ESA 2008

Arp 220

ESO 2010

 $\begin{aligned} \mathcal{R}_{\rm SF} &\sim 10 \ {\rm M}_{\odot} \ {\rm yr}^{-1} & \sim 220 \ {\rm M}_{\odot} \ {\rm yr}^{-1} \\ \mathcal{R}_{\rm SN} & 0.1 \ {\rm yr}^{-1} & 4 \ {\rm yr}^{-1} \end{aligned}$

 $\sim 10 \ {\rm M}_{\odot} \ {\rm yr}^{-1}$

High-redshift starbursts (z~6+)

- Low mass, high SF rates
 - $10^8 M_{\odot}$
 - $10s 100s M_{\odot} yr^{-1}$
 - SF efficiencies ~ tens of %
- Simulation work suggests possibility of filamentary inflows of gas (cf. works by Keres, Dekel, Birnboim...)
- High supernova event rates

MACS1149-JD1 (HST/ALMA) – NASA/ESA, Hashimoto+ 2018 EGSY8p7 (Hubble/Spitzer) – NASA, Labbe+ 2015 GN-z11 (HST) – NASA, Oesch+ 2015 EGSY-zs8-1(Hubble/Spitzer) – NASA/ESA, Oesch & Momcheva 2015

The high-redshift CGM environment

Cosmic rays in star-forming galaxies

Image credit: Crab Nebula, NASA, ESA 2005

Cosmic rays in the Milky Way

Adapted from Gaisser 2007

Starbursts as cosmic ray factories

Hillas criterion

 $E_{\max} \le qBR$

- Cosmic rays sources
 - Galactic (internal) in orange

Fig. adapted from Owen 2019 (PhD thesis) See also Kotera & Olinto 2011; Hillas 1984

Cosmic ray interactions

with radiation fields $(p\gamma)$

Interaction by particles scattering off ambient photons (starlight, CMB...)

Photopion Interaction

$$p + \gamma \to \Delta^{+} \to \begin{cases} p + \pi^{0} \to p + 2\gamma & \text{+ pion multiplicities at} \\ n + \pi^{+} \to n + \mu^{+} + \nu_{\mu} \end{cases} & \text{higher energies} \end{cases}$$
Photomair Interaction
$$P + \gamma \to \Delta^{+} \to \begin{cases} p + \pi^{0} \to p + 2\gamma & \text{+ pion multiplicities at} \\ n + \mu^{+} + \nu_{\mu} & \text{+ pion multiplicities at} \end{cases}$$

מוו ווונכומננוטוו

Cosmic ray interactions

with matter (pp)

Cosmic ray interactions

Adapted from Owen+ 2018 (1808.07837)

Particle propagation

Image credit: M25 Motorway, Carillon UK Transport

The transport equation (hadrons)

• The transport equation for protons (cooling/momentum diffusion assumed negligible)

$$\frac{\partial n}{\partial t} = \nabla \cdot [D(E, \mathbf{x})\nabla n] + \frac{\partial}{\partial E} [b(E, r)n] - \nabla \cdot [\mathbf{v}n] + Q(E, \mathbf{x}) - S(E, \mathbf{x})$$

M82 in H α (WIYN) and optical (HST) Smith+ 2005

•

Secondary electrons

• Injection by the pp attenuation process

The transport equation (hadrons)

$$\frac{\partial n}{\partial t} = \nabla \cdot \left[D(E, \mathbf{x}) \nabla n \right] + \frac{\partial}{\partial E} \left[b(E, r) n \right] - \nabla \cdot \left[\mathbf{x} n \right] + Q(E, \mathbf{x}) - S(E, \mathbf{x})$$

- Approximate ISM as a sphere
- Absorption depends on
 - density of CRs
 - density of ISM gas
 - interaction cross section (dominated by pp process)
- CR injection as a BC (for now)
 - restate problem as individual linearly independent events (t' since inj. event)

$$n = \frac{n_0}{\left[4\pi D(E, r')t'\right]^{3/2}} \exp\left\{-\int_0^{t'} c \, dt \,\hat{\sigma}_{p\pi} \, n_{\rm ISM}\right\} \exp\left\{-\frac{r'^2}{4 \, D(E, r')t'}\right\}$$

Cosmic ray distribution in 'stationary' ISM

17

Cosmic ray feedback

Image credit: National Bunsen Burner Day (March 31st), McGill University 2016

Timescales

 Estimate by considering condition for them to no longer be gravitationally bound – upper-limit (a very crude approximation → details later)

Inferred behavior of MACS1149-JD1

- Spectroscopic z=9.11 (t = 550 Myr) $\mathcal{R}_{\rm SF} \approx 4.2^{+0.8}_{-1.1} \ {\rm M}_{\odot} \ {\rm yr}^{-1}$
- Two populations of stars
 - One from observed SF activity
 - Other from activity ~100 Myr earlier
- Earlier burst of Star-formation at z=15.4; t=260 Myr (Hashimoto+2018)
- Quenched fairly quickly
 - distinct inferred age of older stellar population – SED, size of Balmer break

HST and ALMA image of MACS1149-JD1 (z=9.11) – NASA/ESA, Hashimoto+ 2018

Can CRs account for the rapid 100 Myr quenching after initial burst?

Can CRs do the job? – half an answer...

- Hashimoto+ 2018 star-formation burst models (intense, medium, slow).
- Schober+ 2013 magnetic field growth, traces cosmic ray containment.
- Consistent with CR mechanisms (or mechanical mechanisms)
 - Radiative heating timescales **not** consistent with rapid 'quenching' (need a delay, then fast action)

Why not other mechanisms?

Owen+ 2019b (1905.00338)

- Clear trend, not predominantly sudden/stochastic (i.e. not mechanical hypernovae, etc)
 - Progressive heating (e.g. by CRs) consistent here too
- Dependence on only intrinsic (internal) parameters
 - Internal feedback not external trigger

A closer look...

Image credit: HST image of N90 Star forming region in SMC, NASA/ESA 2007

IC 5146 star-forming region in Cygnus

Evolution of magnetic fields in clouds

Harvard-Smithsonian Center for Astrophysics (2006)

Multi-scale structure

Owen+2020 (submitted)

Cosmic ray propagation

Revisit the transport equation:

$$\frac{\partial n}{\partial t} - \nabla \cdot \left[D(E) \nabla n \right] + \nabla \left[\mathbf{v} n \right] + \frac{\partial}{\partial E} \left[b(E, \mathbf{s}) n \right] = Q(E, \mathbf{s}) - S(E, \mathbf{s})$$

Depends on local-scale structure and strength of the magnetic field

- Strength:
 - Direct (Zeeman splitting)
 - Indirect (DFC method via structure function AKA dispersion function)
- Structure:
 - Via power spectrum (fluctuation analysis); quantifies CR 'tangling'

$$D \propto \frac{1}{P(k)}$$
 $P(k) = \frac{1}{2} \mathcal{F}[\mathcal{S}_2(\ell)]$

Wiener-Khinchin theorem

Dispersion function

- Quantify polarization angle (B field) fluctuations
- Dispersion function of all possible pairs of PAs
- Indicates structure over lengthscales (separations)

$$\mathcal{S}_n(\ell) = \frac{1}{N_{\text{pair}}} \sum_{i=1}^{N_{\text{pair}}} [\varphi_i(x+\ell) - \varphi_i(x)]^n$$

Owen+2020 (submitted)

n=2

Heating and ionization

Temperature

• Milky Way \rightarrow no substantial heating in the inner parts of the cloud

- Starburst galaxies: CRs much more important
- Increase Jeans mass of cloud by ~1 order of magnitude (Arp 220)
- Implications:
 - larger ISM clumps
 - more bursty star-formation
 - quenching (longer to accumulate sufficient mass)

Signatures

Image credit: Gamma-ray Sky with Fermi - NASA/DOE/Fermi-LAT Collaboration

Gamma-ray emission from starburst galaxies

Signatures: spatial anisotropies

Imprints signature at preferred (peak) scale

Redshift (cosmology) dependent ³³

Signatures: spatial anisotropies

Different populations peak at different redshifts

Madau & Dickinson 2014

Future work and considerations

- Modelling intrinsic emission from populations
 - SB intrinsic emission can be parametrized (density, SFR, dust fraction, clumpiness...)
- Probable limitations from EBL attenuation/reprocessing
 - How far in z will populations be detectable with CTA?
 - Could IGM B fields smear-out signal?
- Data: Fermi-LAT; CTA KSP 8 ~25% of the EG sky over 3 years

Summary

- Cosmic rays are presumably abundant in high redshift starbursts (high supernova event rates)
- Can deposit energy into ISM with implications for star-formation and quenching
- May be able to account for the "bursty" star-formation histories in highz starburst/post-starbursts
- Gamma-ray emission is associated with cosmic ray interactions in starburst galaxies
 - May leave signatures in extragalactic diffuse gamma-ray background (anisotropies)