

<u>The Extragalactic</u> <u>Background Light in the</u> <u>Fermi-LAT era</u>

Alberto Domínguez

Universidad Complutense de Madrid

M. Ajello, K. Helgason, J. Finke, A. Desai, V. Paliya and also R. Wojtak, F. Prada, L. Marcotulli, D. Hartmann

Fermi-LAT Collaboration, 2018, Science, 362, 1031 Desai et al., 2019, ApJL, 874, 7 Domínguez et al., 2019, arXiv:1903.12097

Domínguez, Primack, Bell Scientific American, June 2015

Seminar @ Institute for Cosmic-Ray Research - September 4, 2019

Domínguez, Primack, Bell Scientific American, June 2015

Seminar @ Institute for Cosmic-Ray Research - September 4, 2019

Galaxy Evolution and Cosmology

Scientific American, June 2015

$$\Omega_{\rm m} = \Omega_{\rm b} + \Omega_{\rm D}$$
$$\Omega_{\rm m} + \Omega_{\rm A} = 1$$

Cosmic Diffuse Extragalactic Backgrounds

TABLE 2 DECOMPOSITION OF THE DIRBE INTENSITY				
Component	(kJy sr ⁻¹)	(kJy sr ⁻¹)		
Total	137.5 ± 0.3	105.3 ± 0.3		
Zodi	101.8 ± 3.8	80.4 ± 3.3		
ISM		1.1 ± 0.2		
Stars, $m < 9 \text{ mag}$	7.4 ± 2.2	5.3 ± 1.8		
Stars, $m > 9 \text{ mag}$	11.9 ± 0.6	5.7 ± 0.3		
EBL ·····	16.4 ± 4.4	12.8 ± 3.8		

EBL is an order of magnitude lower than foregrounds and subject to large systematic uncertainties, e.g. Gorjian+ 00

Zodiacal light, visible under the right conditions: typically after the sunset in Spring and right before sunrise in Autumn

Observational

Direct galaxy observations

Indirect observations (e.g. Kneiske+ 10; Finke+ 10; Khaire+ 14)

Over redshift (e.g. Domínguez+ 11; Helgason+ 12; Stecker+ 16)

Local

(e.g. Stecker+ 06; Franceschini+ 08)

Extragalactic Background Light (Local)

Extragalactic Background Light (Evolution)

Strong divergence

Gamma-ray Attenuation

Gamma-ray Attenuation

Gamma-ray Telescopes

Gamma-ray Cherenkov Telescopes (IACTs)

Gamma-ray Cherenkov Telescopes (IACTs)

Gamma-ray Cherenkov Telescopes (IACTs)

NASA's Fermi Gamma-Ray Space Telescope

Launch June 11, 2008 Celebrating 10th year Anniversary

- 1. Tracking system:
 - convert an incident gamma-ray to an electron-positron pair
 - reconstruct the gamma-ray direction from the tracks of the pair
- 2. Calorimeter:
 - measure the photon energy
- 3. Anti-coincidence detector:
 - limit the cosmic-ray background

The Gamma-Ray Sky

EGRET All-Sky Map Above 100 MeV

Fermi-LAT All-Sky Map Above 1 GeV

2000

Gamma-ray Fermi-LAT Catalogs

4FGL

Blazars

- Use 9 years of P8 LAT data
- 739 blazars + 1 GRB
- Perform a time-resolved analysis,
- Analysis optimized on simulations Analysis improved over the Ackermann+12 results

- Use 9 years of P8 LAT data
- 739 blazars + 1 GRB
- Perform a time-resolved analysis,
- Analysis optimized on $F(E)_{absorbed} = F(E)_{int \ rinsic} \cdot e^{-b \tau_{mod \ el}}$ simulations Analysis improved over the Ackermann+12 results

Cosmic Gamma-Ray Horizon

Cosmic Gamma-Ray Horizon

Cosmic Gamma-Ray Horizon

Galaxy Luminosity Densities and EBL

Galaxy Luminosity Densities and EBL

Cosmic Star Formation Rate

Re-ionization of the Universe

All deep blank-field HST data: Hubble Frontier Field Parallels, the XDF, CANDELS, and almost all other significant HST + ground-based probes / Mpc³ -2 / 6om z~2 log₁₀ Number -6 7~10 -22-20-18-16 $\mathsf{M}_{\mathsf{UV},\mathsf{AB}}$

Hubble Frontier Fields

Bouwens+2018 (in prep); Oesch+2017

Re-ionization of the Universe

Extragalactic Background Light from Gamma Rays

Tension on H₀ **Measurements**

Gamma-ray Attenuation

Measuring H₀ with Gamma-ray Attenuation

Tension on H₀ **Measurements**

Measuring H₀ and Ω_m with Gamma-ray Attenuation

Take Home Messages

1.- Very significant detection and characterization of the EBL attenuation up to z~3.

2.- Complete derivation so far of the local EBL and its evolution over redshift from *Fermi*-LAT and Cherenkov data.

3.- Derived Cosmic Star formation Rate Density up to z~5 unbiased from different galaxy survey incompleteness.

4.- Cosmological measurement of H_0 and Ω_m from our independent technique.

Gamma-ray astronomy has matured enough and is providing useful measurements in galaxy evolution and cosmology

Cosmology Dependence on the Optical Depth

Comparison with other Methodologies

EBL models: Finke+ 10

Dust emission computed self-consistently:

 $f_n \int d\epsilon \, \frac{1}{f_{esc}(\epsilon)} [1 - f_{esc}(\epsilon)] \, j_{\epsilon}^{stars}(z) = \int d\epsilon \, j_{\epsilon,n}(\Theta_n)$

Three component dust model:

Component	n	f_n	T_n [K]	$\Theta_n \ [10^{-9}]$
Warm Large Grains	1	0.60	40	7
Hot Small Grains	2	0.05	70	12
PAHs	3	0.35	4.50	76

EBL energy density:
$$\epsilon u_{EBL}(\epsilon; z) = \int_{z}^{z_{max}} dz_1 \frac{\epsilon'' j_{\epsilon''}(z_1)}{(1+z_1)} \left| \frac{dt_*}{dz_1} \right|^2$$

JF, Razzaque, & Dermer, (2010), ApJ, 712, 238 Razzaque, Dermer, & JF, (2009), ApJ, 697, 483

EBL models: Domínguez+11

