Understanding the ultra-high energy cosmic-rays

Noemie Globus - ICRR - 2019, August 8

Cosmic Rays primary observables

Energy Spectrum

above ~10¹⁹ eV : extragalactic origin

Auger composition analyses

Figure 5: The mean (top) and the variance (bottom) of ln*A* estimated from data with EPOS-LHC (left), QGSJetII-04 (middle) and Sibyll2.3 (right) hadronic interaction model

TA composition analyses

(m⁻² s⁻¹ sr⁻¹ eV^{1.5})

E^{2.5} J(E)

Scaled flux

Hanlon et al, ICRC 2019

Uncertainties

1. Arrival directions of cosmic rays: <1 degree

2. Composition of the air shower: mostly unknown

3. Energy of cosmic rays: ~10%

Source(s) direction(s) ≠ arrival directions

Source spectrum ≠ observed spectrum

GZK horizon of protons

GZK horizon of protons

GZK horizon of nuclei

Compound nuclei suffer of:

- Processes triggering a decrease of the Lorentz Factor
 - Adiabatic losses
 - Pair production losses (energy threshold ~A × 10¹⁸ eV)

Photodisintegration processes

- Giant Dipole Resonance (GDR); threshold ~ 8 20 MeV largest σ and lowest threshold (Khan et al., 2005)
- Quasi-Deuteron process (QD); threshold ~ 30 MeV
- Pion production (BR); threshold ~ 145 MeV

GZK horizon of nuclei

Compound nuclei suffer of:

- Processes triggering a decrease of the Lorentz Factor
 - Adiabatic losses
 - Pair production losses (energy threshold ~A × 10¹⁸ eV)

Photodisintegration processes

- Giant Dipole Resonance (GDR); threshold ~ 8 20 MeV largest σ and lowest threshold (Khan et al., 2005)
- Quasi-Deuteron process (QD); threshold ~ 30 MeV
- Pion production (BR); threshold ~ 145 MeV

Propagated spectrum

Propagated spectrum: mixed composition

The ankle marks the end of the transition between the Galactic and extragalactic cosmic-rays

Trajectories in a purely turbulent EGMF

Larmor radius

$$r_L = 1.1 Mpc \times \frac{E_{EeV}}{ZB_{nG}}$$

Globus, Allard, Parizot 2008

Diffusion coefficients

$$D \approx 0.03 \left(\frac{\lambda_{\rm Mpc}^2 E_{\rm EeV}}{ZB_{\rm nG}} \right)^{1/3} + 0.5 \left(\frac{E_{\rm EeV}}{ZB_{\rm nG} \lambda_{\rm Mpc}^{0.5}} \right)^2 \,\rm Mpc^2 \,\,\rm Myr^{-1}$$

Globus, Allard, Parizot 2008

ballistic regime

B Pierre-Paul Feyte

The magnetic fog seems to dissipate

(Galactic coordinates)

UHECR magnetic horizons

The amplitude of the UHECR dipole depends on the UHECR horizon (Globus & Piran, 2017)

Noemie Globus - ICRR - 2019, August 8

We use the QL density field derived by Hoffman et al. 2018, Nature Astronomy based on CosmicFlows-2

Cosmic-Ray magnetic horizon for nitrogen (Z=7) for different magnitudes of the EGMF

The Galactic Magnetic Field (Jansson & Farrar 2012, JF12)

GMF: regular component

The GMF of the Milky Way

regular, large scale coherent field	Field	Best fit Parameters	Description	
	Disk	$b_1 = 0.1 \pm 1.8 \mu\text{G}$	field strengths at $r = 5$ kpc	18 1 1 .
		$b_2 = 3.0 \pm 0.6 \mu { m G}$		
		$b_3=-0.9\pm0.8\mu{ m G}$		
		$b_4=-0.8\pm0.3\mu\mathrm{G}$		X /
		$b_5 = -2.0 \pm 0.1\mu{ m G}$		
		$b_6 = -4.2 \pm 0.5 \mu { m G}$		A VX
		$b_7=0.0\pm1.8\mu{ m G}$		
		$b_8=2.7\pm1.8\mu{ m G}$	inferred from $b_1,, b_7$	
		$b_{ m ring}=0.1\pm0.1\mu{ m G}$	ring at 3 kpc $< r < 5$ kpc	
		$h_{ m disk} = 0.40 \pm 0.03 \; m kpc$	disk/halo transition	
		$w_{ m disk} = 0.27 \pm 0.08 \; m kpc$	transition width	
	Toroidal	$B_{\rm n} = 1.4 \pm 0.1 \mu{\rm G}$	northern halo	
	halo	$B_{ m s} = -1.1 \pm 0.1 \mu { m G}$	southern halo	
		$r_{ m n}=9.22\pm0.08~{ m kpc}$	transition radius, north	
		$r_{ m s} > 16.7~{ m kpc}$	transition radius, south	270°
		$w_{ m h}=0.20\pm0.12~{ m kpc}$	transition width	
		$z_0=5.3\pm1.6~{ m kpc}$	vertical scale height	
	X halo	$B_{\rm X} = 4.6 \pm 0.3 \mu {\rm G}$	field strength at origin	
		$\Theta^0_{\mathbf{X}} = 49 \pm 1^{\circ}$	elev. angle at $z = 0, r > r_{\rm X}^c$	
		$r_{\rm X}^{ m cr} = 4.8 \pm 0.2 \; { m kpc}$	radius where $\Theta_{\mathbf{X}} = \Theta_{\mathbf{X}}^{0}$	
		$r_{ m X}=2.9\pm0.1~{ m kpc}$	exponential scale length	
11	striation	$\gamma = 2.92 \pm 0.14$	striation and/or $n_{\rm cre}$ rescaling	
	_			

Jansson & Farrar 2012

Trajectories in the Galactic magnetic field

Globus et al. MNRAS 2019

Noemie Globus - ICRR - 2019, August 8

Globus et al. MNRAS 2019

nitrogen @11.5 EeV EGMF only

Globus et al. MNRAS 2019

nitrogen @11.5 EeV EGMF only

Globus et al. MNRAS 2019

nitrogen @11.5 EeV EGMF only

Globus et al. MNRAS 2019

nitrogen @11.5 EeV EGMF only

Globus et al. MNRAS 2019

nitrogen @11.5 EeV EGMF only

Globus et al. MNRAS 2019

nitrogen @11.5 EeV EGMF only

Globus et al. MNRAS 2019

nitrogen @11.5 EeV EGMF only

Full parametric analysis

With Chen Ding, Glennys Farrar (NYU) ICRC Proceeding: PoS(ICRC2019)243

- Different composition models (allowing shift in <X_{max}> and shift in energy (within 1 σ), testing different hadronic models: EPOS-LHC and Sibyll 2.3)
- Different diffusion coefficients in the extragalactic medium
 - purely turbulent EGMF with variance between 0.1 and 30 nG
 - coherence length 0.08 < λ_{EGMF} < 0.5 Mpc
- Different coherence length for the Galactic magnetic field
 - JF12 model for the regular component** (Faraday rotation measurements)
 - coherence length 30 < λ_{GMF} < 100 pc

**uncertainty due to variation of the regular halo field is under investigation. Here we use the nominal JF12 model.

Mixed composition: prediction >8 EeV

With Chen Ding, Glennys Farrar (NYU) ICRC Proceeding: PoS(ICRC2019)243

EGMF ~0.6 nG, coherence length 0.2 Mpc, GMF coherence length ~75pc

Pure proton does not work

Cannot simultaneously explain amplitude and direction

Noemie Globus - ICRR - 2019, August 8

Pure helium does not work

Amplitude is too large

Best fit parameters: prediction >8 EeV

Consistent with Auger dipole & quadrupole observations >8 EeV PoS(ICRC2019)243

(to be updated with latest data from ICRC 2019)

Noemie Globus - ICRR - 2019, August 8

Different energy bins: 8-16, 16-32, >32 EeV

Consistent with Auger dipole & quadrupole observations >8 EeV PoS(ICRC2019)243

(to be updated with latest data from ICRC 2019)

Noemie Globus - ICRR - 2019, August 8

A few words about hot spots

Telescope Array - Hotspot

number of events grows slightly slower than in the past, but still grows faster than background rate

Hotspot from 11 years of TA SD data, from May 11, 2008 to May 11, 2019

E > 57 EeV, in total 168 events

38 events fall in Hotspot (a=144.3°, ō=40.3°, 25° radius, 22° from SGP), expected=14.2 events

local significance = 5.1 σ , chance probability $\rightarrow 2.9\sigma$

25° over-sampling radius shows the highest local significance (scanned 15° to 35° with 5° step)

"Time-domain" cosmic-ray astronomy ?

Angular decorrelation due to the Earth motion

Angular decorrelation due to the Earth motion

Noemie Globus - ICRR - 2019, August 8

Angular decorrelation due to the Earth motion (5 years)

=> other rigidities and I_{GMF} (with Kusenko-san, Nagataki-san, He-san)

Noemie Globus - ICRR - 2019, August 8

Summary

• Energy spectrum, composition

Auger and Telescope Array confirm the high energy cut-off in the UHECR spectrum (2010)

TA-Auger analyses **agree on a mixed composition** (ICRC 2017) Auger composition analyses shows a composition **which is getting heavier above the ankle**

KASCADE-Grande reported the existence of a light ankle at 10¹⁷ eV (Auger and KASCADE-Grande unfortunately do not have a strong overlap in energy; this problem should be solved in a few years e.g. LHAASO,...)

Arrival directions

Auger reported the first 5σ detection of large scale (~dipole) anisotropy (ICRC 2017)

==> The dipole amplitude and direction are determined by the UHECR horizon (EGMF and GZK distance) (Globus & Piran 2017)

==> The effect of the GMF starts to become significant at rigidities below \sim 10 EV (e.g. Farrar 2016) and it changes the direction and amplitude of the dipole

==> The dipole anisotropy > 8 EeV can be well accounted for with UHECR sources following the LSS (Virgo being the dominant source), EGMF ~0.6 nG and JF12 model

=> Importance of composition for anisotropy studies (dipole, hotspots...)

D **A**) ッとう