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@ Formation of Bose Stars

D.Levkov, A.Panin, & IT, PRL 121 (2018) 151301
@ Axion Bose Star collapse

D.Levkov, A.Panin, & IT, PRL 118 (2017) 011301

@ Cosmological and astrophysical implications
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Bose-stars

o Bose star is self-gravitating field configuration in the lowest energy
state. Ruffini & Bonazzola, Phys. Rev. 187 (1969) 1767

@ May appear in Dark Matter models with light Bose particles.
Mainstream candidates - QCD axion or ALP in general:
Axion stars
IT, Sov. Astron. Lett. 12 (1986) 305

@ Vast literature, but little attention to the problem of their formation.
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Bose-star formation

@ Interactions are needed to form Bose condensate

@ But ALP couplings are extremely small

QCD axions

String axions

@ Solve strong CP problem
o CDM: m = 26 ueV
e A~ 1050

@ Appear in string models
e Fuzzy DM: m ~ 10722 ¢V

@ \~ 10100

@ Relaxation time is enhanced due to large phase space density f
IT, Phys. Lett. B 261 (1991) 289

—1
Tr

~ovnf where f ~

" s

(mv)?

which is still not enough to beat small A (except in rare axion miniclusters)
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Bose condensation by gravitational interactions

Are we crazy?
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Bose condensation by gravitational interactions

Are we crazy?

No
f > 1 — classical fields

v & 1 — nonrelativistic approximation

Gravity but no other interactions
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Bose condensation by gravitational interactions

Are we crazy?

e No

e f > 1 — classical fields P(t, )
e v < 1 — nonrelativistic approximation U(t, x)
o Gravity but no other interactions

Field equations for light DM (Scrédinger-Poisson system)

Bose star is a stationary solution:

P = 'l/’S("')e_iwt

10y = —AY/2m + mU
AU = 4nG(m|y|* —(p))
P

Solving these equations in time, we find Bose condensation!
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Initial conditions

e Maximally mixed (virialized) initial state

@ Subsequent evolution in kinetic regime

leoh ~ (mv)™! <K R
(mv?)~ 1 « Tgr

=> Random initial field:

Pp o @ PI/2(mw0)® o Gidp
momentum random
distribution phases

_(mz—y>2 2
$@)h(y) e feorHleon = —
0

and R > (mfu())_1 is assumed
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Time evolution

t = 10.266 x 10°/mv? o
PO A S arXiv:1804.05857
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Time evolution

Maximum field value over the simulation box

=1.3-106
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This is not a Jeans instability
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It's a Bose star

t=1.3-10 |w‘ ‘¢|

We observe formation of a Bose star at t = 7,
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Bose star appearance: another signature

Energy distribution at different moments of time

d .
F(w, t) = i = [d3 [ 9 (t, @)p(t + 1y, x) eiwtr—t1/7E

2VBose star
3
R t> Tgr
L

_]_ wS

Thermal: | F oc w—1/2
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Kinetics

Landau equation — derivation

@ Perturbative solution of Schrédinger-Poisson equation

@ Kinetic approximations (mv)~! K z, (mv?)~1 K« t
@ Compute Wigner distribution
fot,z) = [dPye P (p(x +y/2)y" (z — y/2))

random phase average

<

e.g. Zakharov, L'vov, Falkovich '92
A fp + %wap — MV, UV, fp = St f,

20
. o o Landau
3] Q
= O --- SP
Oeong Good agreement of lattice and kinetic F'(w)
O
t~ Ty @00
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Kinetics

Landau equation — derivation

@ Perturbative solution of Schrédinger-Poisson equation

@ Kinetic approximations (mv)~! K z, (mv?)~1 K« t

@ Compute Wigner distribution

fo(t, @) = [ dPye Y (y(x + y/2)p" (x — y/2))

random phase average

<

e.g. Zakharov, L'vov, Falkovich '92

p = fo
1) —Voa —mV .UV = St ~ = . .
efp + m fp—m 2 wfp Tkin <— relaxation time

f3 < Bose amplification

. . 4+/2b
Time to Bose star formation: 74, = b Tiin, = L
T ogronf

O(1) correction
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Time to Bose star formation

Tgr =

4+/2b

ogronf

Rutherford cross section: o, =~ 87 (mG)?A /v* ‘A = log(mvR) ‘

Coulomb logarithm

Average phase-space density: f = 67%n/(mwv)3

bv2 mo®

bV 2w

T -
9" 7 1273 G2An2

 3G2mSA

f—2

@ Strongly depends on local quantities: n, v, f

@ Involves global logarithm A = log(mvR)
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Time to Bose star formation

Kinetic scaling of 74, with parameters

t=1.3-10° .
K] 108 F ~

2 B

' g

1 o

P

S

02

o
0
i

m2v8/G?*n2A

e Gaussian: fp o< |1p|? o e P?/(mv3) b~ 0.9

e d0: fpxd(p—mpol), b= 0.6
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Bose star formation in halo/minicluster

t =250 t = 1250 |w|
Large box = Jeans instability
Bk 3 => minicluster
; \:_:_m- 2
;b a |
6
" T 0 o bv2 mu
. 9" 1278 G2An?
RS Virial velocity: v ~ 4mrGmnR? /3
g
S 0.05 R
l‘m Tgr ™~ T — (Rm'U)3

Tgr > R/v < free-fall time

Rmv ~ 1 — condense immediately
m2v8/G?n2A
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Models: fuzzy dark matter

String axions

2
o 106yr< m >3 < v )6 <0.1 M@/pc3>
9" 10—22eV 30km/s p

Fornax dwarf galaxy

v ~ 11 km/s
p ~ 0.1 Mg/pc®
Tgr ~ 1000 yr

Universe filled with Bose stars!
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Models: QCD axion

Domains=horizon g Damped
Cosmic strings ’ oscillations=CDM

Peccei-Quinn phase transition at T' ~ f, Axion potential switches on at QCD epoch
V(a) = fama(T) [1 — cos(0)]

0=a/fa
PQ phase transition before inflation is disfavored
PQ phase transition after inflation:

Three contributions to axion DM
@ Coherent oscillations of axion field (misalignment angle)
@ Decay of PQ strings

@ Decay of QCD axion domain walls

M. Nagasawa and M. Kawasaki, Phys. Rev. D50 (1994) 4821
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QCD axion cosmology

PQ phase transition after inflation — Miniclusters

@ After phase transition 0 < 8 < 27 from horizon to horizon,
but @ =~ const on a horizon scale I

@ Peculiar initial amplitude of oscillations when m, turns on

@ Dark Matter should be very clumpy
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QCD axion cosmology

PQ phase transition after inflation — Miniclusters

@ Mass scale of the clumps is set by M ~ 10™** Mg, which is DM mass within
horizon at Tose = 1 GeV

@ Naively, initial DM density contrast is §pa/pa = P ~ 1
@ In fact, very dense objects can form, ® > 1, since for @ ~ 1 the axion attractive

self-coupling is non-negligible, 2 4
V(a) = m2 2 (0 0 )
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QCD axion cosmology

Minicluster Formation at QCD Minicluster evolution around equality

0.8F

0.6F

A -. :
0.0001 0.001 0.01 0.1 1
alagq

A clump becomes gravitationally bound at
T = ® Toq, i.e. its density today

Pme = 1408° (1 4 ) pa(Teq)
The height of the plot is cut at & = 20. E.Kolb & IT, Phys.Rev. D50 (1994) 769
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Models: QCD axions

10° yr M, 2 m 3
Tor ™ T \10-18 Mg ) \26peV

‘. o@~1:>7'gr~109yr
Mass fraction in miniclusters with ® > ®¢ 3
E.Kolb & IT, Phys.Rev. D49 (1994) 5040 ° &~ 10° = 7y ~ hr

Universe filled with Bose stars!
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Models: QCD axions

10° yr M, 2 m 3
Tor ™ T \10-18 Mg ) \26peV

‘. o@~1:>7'gr~109yr
Mass fraction in miniclusters with ® > ®¢ 3
E.Kolb & IT, Phys.Rev. D49 (1994) 5040 ° &~ 10° = 7y ~ hr

Universe filled with Bose stars!

Abundance? Mass function?
Thorough study of axion production from from topological defects is needed
M. Kawasaki, K. Saikawa, T. Sekiguchi, Phys.Rev. D91 (2015) 065014
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ALP Bose star instability

Self-coupling of axions is negative i
and axion Bose stars are unstable
against collapse. 5
w
—
100
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ALP Bose star collapse, stage |

Self-similar wave collapse

10
b e P ==
- 821071 ===
X
N

1076 1073 1

Black hole does not form for f, < Mp;
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Collapse, stage Il: Relativistic Bosenova

Repeated explosions

Field evolution in the center Radial profiles at different times

10 -
o
l’ﬁ
&
=1
(@)
=
S
1073
07 T 5.108 10
be d
mit
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Collapse, stage Il: Relativistic Bosenova

Repeated explosions

Field evolution in the center

- Eq. (16)

1800 mt 2700

p(t, 0)/m>f?
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Repeated explosions

Field evolution in the center

10°
™
S~
E
=1 r
O -
Ny
QU |---- Eq. (16)
10-3 |
1800 mt 2700
103
1L
-3
0 5-10% 10*
Ik
mt
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Radial profiles at different times

mt = 802

Waves —y

mt = 2253
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Decay of Bose star on relativistic axions

Spectra of emitted particles Total emitted energy fraction
105 Lﬂ 03
. ¥ CONST
_ ~
5 fz/M[%l - 10—; E ROy g ey O
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dB /dk x
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Phenomenological implications (QCD axions)

o Less diffuse DM -> smaller signals in DM detectorts

@ But rare strong signals during encounters with debris of tidally

disrupted miniclusters
P.Tinyakov, IT and K. Zioutas, JCAP 1601 (2016) 035

@ Gravitational microlensing and femtolensing
E.Kolb & IT, Astrophys.J 460 (1996) L25
M.Fairbairn, et. al, PRL 119 (2017) 021101

@ Decay of Bose stars
o Decay to relativistic self
@ Resolution of tension between low and high z observations?
Z.Berezhiani, A.Dolgov & IT, Phys.Rev. D 92 (2015) 061303
o Decay to radiophotons
@ Relation to FRB?
IT, JETP Letters 101 (2015) 1
A.lwazaki, PRD 91(2015) 023008
o Relation to ARCADE 2 excess and/or anomalous 21 cm signal?
J.Kehayias, T.Kephart & T.Weiler, JCAP 1510 (2015) 053
S.Fraser et al, arXiv:1803.03245
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Fast Radio Bursts and axion Bose-stars

FRB - mysterious astrophysical phenomena

Short radio flash, 1 ms
Cosmological origin, z ~ 1
Energy release 103% — 1040 ergs

Huge brightness temperature
T ~ 1036 K

@ Rate: ~ 10% events/day for the
whole sky.
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Fast Radio Bursts and axion Bose-stars

FRB - mysterious astrophysical phenomena

@ Short radio flash, 1 ms @ Radius of axion Bose-star 1 ms

@ Cosmological origin, z ~ 1 @ Minicuster mass

@ Energy release 1038 — 1040 ergs 10712 Mg = 2 x 10%? ergs

@ Huge brightness temperature @ Bose-star can explode in a burst of
Tp ~ 10°¢ K coherent radiation

) 4

° Ritei' Nklo events/day for the @ We have 10%# miniclusters just in a

Whole sky. Galaxy
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Fast Radio Bursts and axion Bose-stars

FRB - mysterious astrophysical phenomena

@ Short radio flash, 1 ms @ Radius of axion Bose-star 1 ms

@ Cosmological origin, z ~ 1 @ Minicuster mass

@ Energy release 1038 — 1040 ergs 10712 Mg = 2 x 10%? ergs

@ Huge brightness temperature @ Bose-star can explode in a burst of
Tp ~ 10°¢ K coherent radiation

) 4

° Ritei' Nklo events/day for the @ We have 10%# miniclusters just in a

Whole sky. Galaxy

Can FRBs be explained by axion star explosions into pure radiation?
IT, JETP Letters 101 (2015) 1
A. lwazaki, PRD 91(2015) 023008
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Axion direct detection

Minicluster abundance

Typical miniclusters with ® =~ 1:

e 10%% in the Galaxy
10'° pc—3 in the Solar neighborhood
Minicluster radius ~ 107 km

Direct encounter with the Earth once in 10° years

During encounter density increases by a factor 108
for about a day

But, some miniclusters are destroyed in encounters with stars.
This may change the prospects for DM detection.
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Axion direct detection

Tidal streams from miniclusters
Probability of a minicluster disruption

P(®) = 0.022 (%) B3/ (14 @)~ /?

Just disk crossings. No actual orbits integration.
P.Tinyakov, IT and K. Zioutas, JCAP 1601 (2016) 035
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Axion direct detection

Crossing tidal streams from miniclusters

Mean number of encounters with axion streams producing amplification factor larger
than A, as a function of A. Twenty year observation interval is assumed.

10 —

~

N(A)

0.1 e MRS

A

P.Tinyakov, IT and K. Zioutas, JCAP 1601 (2016) 035
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Axion direct detection

Crossing tidal streams from miniclusters

Simulation of expected PWS in cavity experiments

Mz 01T N — o

B
v — g [kHz]

C. O’Hare and A. Green, Phys.Rev. D95 (2017) 063017
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Conclusions

@ Bose condensation by gravitational interactions is very effcient
@ Large fraction of axion dark matter may consist of Bose stars

@ Phenomenological implications of Bose star existence are reach and
deserve further studies
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