The Tomo-e Gozen project

Shigeyuki Sako (Institute of Astronomy, the University of Tokyo)

ICRR seminar, the University of Tokyo, 2019/2/27 15:30-

Institute of Astronomy, the University of Tokyo

Kiso observatory Kiso, Nagano, Japan 1.0-m wide-field Schmidt telescope The university of Tokyo Atacama observatory (TAO) 5,600-m alt., Atacama, Chile 1.0-m mini-TAO telescope 6.5-m telescope (under construction)

Headquarter Mitaka, Tokyo, Japan

Kiso Observatory

Correcting lens

Kiso observatory, Institute of Astronomy, the University of Tokyo

- Established in 1974
- Dark sky, 1120-m altitude
- Accommodation, Cafeteria

Extremely wide-field Schmidt telescope

- Field of view: φ 9 degrees
- Primary:
- 150 cm spherical mirror
- Corrector : 105 cm aperture
- Focal ratio : 3.1
- Main instrument : Tomo-e Gozen camera

Primary mirror

OUTLINE

- 1. Introduction of Tomo-e Gozen
- 2. Instrument and computing system
- 3. Survey plans and early results

Snapshot of the Sky

LSST Project/NSF/AURA

Time domain astronomy

The Universe with **HOURS** time scale is less surveyed. The Universe with **SECONDS** time scale is still unknown.

Multi-messenger astronomy

- Gravitational waves were detected from a black hole-black hole merger in 2015.
- The new astronomy with EM and non-EM radiations has begun.

GW events detected by LIGO/Virgo

Neutrino cascade events detected by IceCube

QUICK optical follow-ups with a few 10 DEG² are required.

Missing events in astronomy

- Most of fast-moving-objects and flash-events have been missed in surveys.

Meteors

Near earth asteroids

Space debris

Unknown high-energy flashes

© Jay Wong/All About Space magazine Unknown alien planets

High-speed and wide-field observations with are required.

Wide-field high-speed camera The Tomo-e Gozen

Kiso Schmidt telescope The University of Tokyo D=105-cm, f/3.1 the Tomo-e Gozen with 84 CMOS sensors FoV of 20 deg² The Tomo-e Gozen is named after Tomo-e Gozen (Lady Tomo-e), who is a woman warrior born in the Kiso region, Japan in the 12th century.

Sako et al. 2018, SPIE, Kojima et al. 2018, SPIE, Sako et al. 2016, SPIE, Morii et al. 2016, ApJ, Osawa et al. 2016, SPIE

the first wide-field CMOS camera The Tomo-e Gozen

- FoV of 20 deg² in ϕ 9 deg
- 84 chips of CMOS, 1k x 2k pixels
- Consecutive frames at 2 fps (max)
- Big movie data of 30 TB/night (max)
- Room temperature, Non-vacuum

Canon

CCD vs CMOS sensor

- Large format (< 6k x 6k) Slow readout (>10sec) global shutter only Simple structure High voltages necessary Backside and full-depletion
 - technologies established

CMOS

Large format (< 8k x 8k for commercial use)
Fast readout (>0.1sec)
Rolling shutter available
Embedded functional circuits → Low read noise
○ Low voltages & low power
Backside and full-depletion (hybrid structure)
technologies under development

Image taken on Nov. 2018

1. Introduction

The full-spec Tomo-e Gozen will be completed in April 2019

Comparison of Field-of-Views

Survey power for transient events

1. Introduction

16

Intensive Science Programs

1. Transient survey

- Elv > 40 deg (7,000 deg²) every 2 hours
- 3 visits per night
- Record all events < 20 mag (dark clear night)
- SNs, Novae, variables

2. Follow-up / Simultaneous

- GWs, neutrinos
- FRBs, NSs, BBHS, meteors, NEO,

3. Fixed FoV + high-speed

- 2-fps@ 20 deg² -- 200-fps@ 52" x 38"
- Occultation of TNOs, YSOs, flares, FRBs, NSs, BBHs, meteors, NEOs

- Each circle: FoV with Φ9 deg
- Yellow: Milky way

Organization

+ Initially, the survey data can be accessed by only Tomo-e members.

Camera development team

- Core members: ~10 persons
- U-Tokyo Mitaka staff + Kiso Observatory staff + Graduated students
- 3 Master's thesis on camera development

OUTLINE

- 1. Introduction
- 2. Instrument and computing system
- 3. Survey plans and early results

Requirements for high-speed and wide-field optical observations

0. Concept	Simple is stable and sustainable.
1. Image sensor	 High-speed frame read without dead time Low read noise Low power dissipation or cooler
2. Data acquisition	 Consecutive data acquisition High absolute time accuracy High time stability
3. Optics	• Wide field
4. Computing	Large storage, high-speed processing & network, data visualization
5. Operation	 Quick telescope system Quick communication system for observers

Design concept of Tomo-e camera

- ✓ Discovery of transients
- ✓ Wide-field and high-speed
- ✓ Simple design
 - ordinary temperature and pressure
 - w/o moving parts
 - easy maintenance

\checkmark All of raw data is deleted in 7 days.

Tomo-e Gozen Q1

2. Instrument

21 chips of CMOS sensors of Q1

Overview of Camera System

Large pixel CMOS sensor

Kojima et al. 2018, SPIE

- Canon 35MMFHDXM
- 2,000 x 1,128 pixels, front side illuminated
- **19** μm pix⁻¹
- Micro lens array + cover glass
- Rolling shutter
- Photosensitive / package = 0.35
- Analogue 16-ch outputs
- Photon sensitive: 370 730 nm
- Power consumption: 230 mW chip⁻¹ @2-fps
- Well: 6,000 e⁻, 53,000 e⁻ @ G=x16, x1.7
- **Read noise: 2.0 e**⁻, 9.2 e⁻ @ G=x16, x1.7
- Dark current: 6 e⁻ sec⁻¹ @305K

Photoelectric conversion efficiency

 \rightarrow Less than sky background in dark night, 50 e⁻ sec⁻¹, at room temperature

Limiting magnitude

5- σ limiting magnitude

assuming same filter-bandwidth and pixel size

Tomo-e Gozen :	0.5 sec/frame,	N _{read} =2 e-
PanSTARRS, ZTF :	30 sec/frame,	N _{read} =5 e-
LSST :	60 sec/frame,	N _{read} =10 e-

Photometry

- Photometry with many reference sources
- Quick follow-ups for rapid variables

Movie obtained in 2-fps, consecutive 6 frames every pointing

- 1 chip, FoV of 39.7' x 22.4'
- 5- σ limiting mag: 18.7 mag
- Photometric accuracy: ~10 millimag @ time scale < 5 sec

2. Instrument

DAQ and GPS system

- High-stability synchronization clock, ~10⁻⁵

On-site computing system

Data visualization

Тото-е Gozen Sky map

Weather monitoring system

- Automatic observations based on Queue system
- Remote observations from Mitaka headquarters when needed.
- Quick information sharing

Operation

https://slack.com

- LINE-like app optimized for business
- Many species of apps and bots.
- Easy and quick communication with multimedia.

Volatile data management system

2. Instrument

Data Analysis

Informatics approach

Machine learning

- Random forest classifier
- 3380 sets of training data including artificial data as NEOs
- False positive rate ~ 1%
- True positive rate ~ 99%
- Un-cataloged fast-moving-objects of ~500 events/night are being detected.

Kojima et al 2018, ASJ meeting

Sparse modeling

- Expressed movie frames as a matrix.
- Decomposed to Low-rank and Sparse matrixes with GoDec method.

Morii et al 2017, AJ

Cyber space of Tomo-e Gozen

OUTLINE

- 1. Introduction
- 2. Instrument and computing system
- 3. Survey plans and early results

Tomo-e transient survey

All sources can be followed by spectroscopy with 1 – 3 m class telescope

First wide-field movie survey

10,000 deg² - 2 hr cadence - <u>18 mag</u> depth

- no filter: effectively g+r (λ = 400 700 nm)
- [0.5 sec exposure] x 12 frames
- 6 sec exposure/visit
- ~10,000 deg² sky (El > 35 deg)
- 3 5 times visits per night

Targets

Supernovae, nova, pulsar, (GW), neutrino, comet, asteroid, meteor, occultation, NEO, debri, super-flare, dwarf star flare, CV, "Tomo-e Flash", YSO, Ultra-Long GRB, Fast Radio Burst, AGN, X-ray transient, unknown unknown.

3. Survey

Tomo-e transient survey

Tests with Q1 unit

- 2,000 deg² survey in 2 hours
- at each pointing
 - 0.5 sec exposure x 12 frames
 - 2 x 2 dithering
- 100 beam switches
 - moving time 6-8 sec
- Limiting magnitude of 5-σ 18 mag is achieved.

Each circle is a FoV of full Tomo-e, ϕ 9 deg

Tomo-e transient survey

Detection pipeline for transient sources

Detection for `hours timescale' events

Tomo-e transient survey

Detection pipeline for transient sources

Web and SQL interfaces for Tomo-e transient server

					the second	and the second						
Tag: Final	SN 2 v6 Exclude stregat	N ⊮'SN' ⊜AG Ive ⊜Star ⊜Më	2N ⊖Ster ⊝M P ⊖center ⊖B	p logus (2 Chec	ked	tag					
Dute	min	max	(YYYYHMM-DC	æ.								
Posit	ion: RA ser of det.: min	Dec	Radius (arcmir	nd		co	ordina	ate				
Option Display Show Show Output	ns ay 10 objects from a newor o bogus Chacked Objec at as fast	tjects ooklers 55 ()	kljecta i brighte	er oksjes	is.							
2008	ch											
1 000	ects were found											
t obp	on ects were tound t previous							pege juro				French in the
t oto frs page	oti j ecta were tound t previoun.] 1/1							page juro				out i la
t etp fre page	ch ects were found t previous 1/1							pege juro				freed is too
t etc fre page 10	en pots were huund t predout 1/1 Name	Ha, Dec Date (magnitude)		Ref	New	5.0	SDSS DR15 Ref	paga juro PS1 gri 3- color Ref	parameters orrecard	mark		Select all Bog
1 aby free page 10 11 (15)	ch previous 1/1 Name 16asak 2018-03-25 anbox	Ha, Dec Date (magnitude) 161.75036 , 4	4.5725	Ref (2)		50 12	SDSS DR15 Ref	paga juro PS1 gri 3- color Bef	personand orward 3	mark Report SN2 Au	Roung T IN7 Variable?	Select all Bog
t obje first page 10 11 (15)	ch ects were found t previous 1/1 Name 13ccosk 2010-03-25 arbox Oteochol jung	Ha, Deo Date (magnitude) 181.75036 , 4 20180325 6JA	14.57325 Filend -	Ref Sk	New D	54	SDSS DR15 Ref	PS1 gri 3- color Bet	personand original 3	mark Rapot 1 Ski? Al MP2 N	foung? 347 Variable? 107 Uncker	nut 1 Select al Bo

Initially, the data base is accessed only via VPN connection of Kiso observatory.

In near future, it will be accessed with an external rental server, but amount of information is limited because of poor network bandwidth, 150 Mbps upload from Kiso.

You are welcome to contribute improvement of network infrastructure! Tomo-e transient survey Hou

Hours timescale events

Classical novae

Brightness at pre-maximum halt corresponds to Eddington luminosity? → use as standard candle.

YSO flares, dust obscuration

Mon567

Stauffer+2014

Maehara+

Optical

Infrared

X-ray flares

Black hole binaries appears optical transient bursts.

MAXI team+

Black hole Super giant

1.1.1.4

3. Survey

Exoplanet surrounding WD?

Broken by tidal disruption? Minutes timescale variability is detected.

Ohsawa+

WD 1145+017 Gänsicke +2016

Ishiguro+2013

17P/Holmes

Asteroid collisions

Rapid variabilities are observed

due to gas accretion and dust

disk in YSO system.

Search for evidences of a recent collision between two asteroids.

Ishiguro+

Mori+

1 dav

Comet outbursts

Fresh material is emerged from inside in outbursts.

Sarugaku+

3. Survey

Tomo-e transient survey

P.I. Tomoki Morokuma (U-Tokyo)

~1,000 supernovae including ~ 5 early phases could be discovered per year.

<u>Very Early Phases of Core-Collapse Supernovae</u>

• Very Early Phases of Type Ia Supernovae

Single degenerate (SD) vs double degenerate (DD)

Detection pipeline for Tomo-e transient survey fast-moving sources Detection for `v > 1 arcsec/sec' sources Masked frames with Tomo-e raw-movie data **Masking stable sources** only moving objects 0.5 sec each #12 Mask image #1 Simple photometry 10⁸ records/night in a few minutes **Tomo-e fast-moving** Photometry table Classifier based on Classifier based on with feature values existing catalogues machine learning Web object server candidates interface NEO Bogus (artificial, seeing SQL dance, cosmic ray, etc.) interface debris is rejected. satellite Satellite, space debris, and NEO catalogues Alerts of follow-ups meteors

3. Survey

Tomo-e transient survey

~ 100 small-NEOs could be discovered per year.

Near earth objects (NEOs)

are asteroids or comets with a closest approach to the Sun (perihelion) of < 1.3 au. Their orbits are evolved from main belts.

Planetary defense is necessary for keeping human civilization!

3. Survey

Tomo-e transient survey

Derived orbits and sizes

object	size	arc	fitting err(")	е	P	closest distance
#1	~40 m	2.2 hr	0.79	0.37	1.96 y	0.99 au
#2	~20 m	2.6 hr	0.38	0.50	2.77 y	0.97 au
#3	~1 m	1.5 hr	1.62	0.96	89.78 d	3200 km
#4	~1 m	15.1 min	3.76	0.65	0.56 d	9900 km
#5	~0.2 m	40 min	2.44	0.51	0.93 d	20000 km
#6	~20 m	2.4 hr	0.61	0.77	0.89 d	8900 km
#7	~0.2 m	12.7 min	1.15	0.73	0.85 d	10000 km
#8	~1 m	35.7 min	5.34	0.57	0.80 d	16000 km
#9	~0.5 m	2.9 hr	1.05	0.56	1.01 d	19000 km
1	•	② ⑦	3		 . . . 	(5)

Heliocentric orbit

Geocentric orbit

Quick follow ups in a few hours are required to confirm NEO orbits.

ER14: from Mar. 4 2019

O3: from Apr. 1 2019

Tomo-e Gozen GW followups: from late Mar. 2019

NS-NS sensitivity

	O2 (Mpc)	03	3 (Mpc)
LIGO/Hanford (H1)	70	\rightarrow	90
LIGO/Livingston (L1)	100	→	135
Virgo (V)	27	\rightarrow	55
KAGRA		8	- 25

Reported on Feb. 15 2019

NS-NS event rate +

(4 - 10) x 10³ Gpc⁻³ yr⁻¹ from O1-O2
 → 1/month max, 2/year med.
 † BH-BH: 1/month - 1/week

NS-NS localization

120 – 180 deg² with 90% credible (med) 10 - 20% of the area is localized < 20 deg²

Tomo-e GW follow ups

Wide-field GW survey in O3

~100 deg² - 21 mag depth

- Targets: NS-NS, and BH-NS
- ~100 deg² sky
- on-source ~15 min exposure/pos
- [0.5 sec exposure] x 1,800 frames
- Non-galaxy-targeted survey †
- no filter: effectively g+r

+ Other telescopes of J-GEM teram will observe galaxies < 100 Mpc.

Time-resolution is selectable after getting data.

Core members:

3. Survey

- T. Morokuma, Y Niino (IoA, U-Tokyo)
- N. Tominaga (Konan U)
- M. Tanaka (Tohoku U)
- J-GEM members

When getting GW alerts, the observation mode will be changed to the follow-up mode immediately.

2-fps wide-field movie survey 17 mag depth – 2Hz

3. Survey

3. Survey

Tomo-e high-speed programs

High-speed imaging of NEO

Urakawa+ 2019, AJ accepted

Near earth object 2012 TC₄

2012 TC4 was produced by impact events within ~3 x 10^5 year and has fresh surface.

First faint-meteor survey

Ohsawa+ 2019, Planetary and Space Science

Sample of bright meteor with drifting trail

Detection number of meteor

>1,500 eventsdetected in a night.Brighter than 13 mag

Luminosity function of faint meteors is derived for the 1st time. The slope is consistent with brighter one.

Congratulations! Hayabusa-2 touch down on Ryugu

Hayabusa-2 spaceship, JAXA

Image taken just after touch down on the surface, JAXA

Memorial picture, AFP/JAXA

Movie of Hayabusa-2 taken by Tomo-e Gozen in the Earth swing-by

Test survey for single flash of t < 0.5 sec (= Tomo-e flash)

• Data set (2 fps)

with 8 sensors

Fields	Observation time	Data size	frames
High galactic latitude	6.0 hours	1.8 TBytes	43,000
Virgo cluster	3.4 hours	1.0 TBytes	24,000

Detection and classification

Fields	Meteor	Cosmic ray	Elec. noise	Artificial obj.	others
High galactic latitude	87	140	14	107	7
Virgo cluster	121	59	5	28	3

- Detected in only one frame, < 0.5 sec
- Single event (not repeated), 16-mag
- Same PSF as other sources, ~3"
- No color information obtained

Most Tomo-e flashes would be from artificial objects

- Space debris with ϕ 10-mm on the geostationary orbit can be detected.
- In earth's shadow on the sky, no flashed are detected with Tomo-e in an additional observation run for 1 month.

But, we caught only one flash signal in the earth's shadow! What is this signal? Space debris or Space treasures? We will try to check again with full-Tomo-e.

in partial read mode Tomo-e very high-speed programs

Detection of 10-msec scale flares in the blackhole binary MAXI J1820+070

Sako et al. 2018, Atel #11426

Absolute time accuracy: \pm 0.2 msec

• **66.294 msec/frame**, 9.9' x 7.1', 15 sets of consecutive 2,000 frames

6.149 msec/frame, 1.6' x 0.79'
 15 sets of consecutive 10,000 frames

Simultaneous observations with Optical and X-ray

Kokubo+ 2018, ASJ spring meeting

3. Survey

in partial read mode Tomo-e very high-speed programs

6.45-msec resolution observations of Crab pulsar

Periodic pulsations of 33.7 msec

Plans

- Simultaneous observations of giant pulses of Crab pulsar with radio and X-ray telescopes.
- 58 Optical survey for periodic pulsations in milky way fields.

3. Survey

SUMMARY of the Tomo-e Gozen

Instrument

- 1-m Kiso Schmidt telescope
- 20 deg², 2 fps
- 84 chips of 1k x 2k CMOSs
- 30 TB per night
- 19 mag @t_{exp}=0.5sec
- Optimized for discoveries of transients
- Simple system
- All of raw data is deleted in 7 days

Science targets

- Tomo-e transient survey, 10,000 deg² every 2-3 hours
- GW optical counterparts
- Fast moving objects, high-speed monitoring

Full Tomo-e Gozen will be completed in spring 2019

